
CPUID Handling (part 3)

Revision 1

June 8, 2017

Contents

1 Current state 1

2 Issues with the existing hypercalls 2

3 Other problems 2

4 Proposal 3

1 Current state

At early boot, Xen enumerates the features it can see, takes into account
errata checks and command line arguments, and stores this information in the
boot_cpu_data.x86_capability[] bitmap. This gets adjusted as APs boot
up, and is sanitised to disable all dependent leaf features.

At mid/late boot (before dom0 is constructed), Xen performs the necessary
calculations for guest cpuid handling. Data are contained within the struct
cpuid_policy object, which is a representation of the architectural CPUID
information as specified by the Intel and AMD manuals.

There are a few global cpuid_policy objects. First is the raw_policy which
is filled in from native CPUID instructions. This represents what the hardware is
capable of, in its current firmware/microcode configuration.

The next global object is host_policy, which is derived from the raw_policy
and boot_cpu_data.x86_capability[]. It represents the features which Xen
knows about and is using. Next, the pv_max_policy and hvm_max_policy
are derived from the host_policy, and represent the upper bounds available to
guests.

1



The toolstack may query for the {raw,host,pv,hvm}_featureset information
using XEN_SYSCTL_get_cpu_featureset. This is bitmap form of the feature
leaves only.

When a new domain is created, the appropriate {pv,hvm}maxpolicy is dupli-
cated as a starting point, and can be subsequently mutated indirectly by some
hypercalls (XEN_DOMCTL_{set_address_size,disable_migrate,settscinfo}) or
directly by XEN_DOMCTL_set_cpuid.

2 Issues with the existing hypercalls

XEN_DOMCTL_set_cpuid doesn’t have a return value which the domain
builder pays attention to. This is because, before CPUID part 2, there were no
failure conditions, as Xen would accept all toolstack-provided data, and attempt
to audit it at the time it was requested by the guest. To simplify the part 2
work, this behaviour was maintained, although Xen was altered to audit the
data at hypercall time, typically zeroing out areas which failed the audit.

There is no mechanism for the toolstack to query the CPUID configuration for
a specific domain. Originally, the domain builder constructed a guests CPUID
policy from first principles, using native CPUID instructions in the control domain.
This functioned to an extent, but was subject to masking problems, and is
fundamentally incompatible with HVM control domains or the use of CPUID
Faulting in newer Intel processors.

CPUID phase 1 introduced the featureset information, which provided an ar-
chitecturally sound mechanism for the toolstack to identify which features are
usable for guests. However, the rest of the CPUID policy is still generated from
native CPUID instructions.

The cpuid_policy is per-domain information. Most CPUID data is identical
across all CPUs. Some data are dynamic, based on other control settings (APIC,
OSXSAVE, OSPKE, OSLWP), and Xen substitutes these appropriately when
the information is requested.. Other areas however are topology information,
including thread/core/socket layout, cache and TLB hierarchy. These data are
inherited from whichever physical CPU the domain builder happened to be
running on when it was making calculations. As a result, it is inappropriate
for the guest under contraction, and usually entirely bogus when considered
alongside other data.

3 Other problems

There is no easy provision for features at different code maturity levels, both in
the hypervisor, and in the toolstack.

2



Some CPUID features have top-level command line options on the Xen command
line, but most do not. On some hardware, some features can be hidden indirectly
by altering the cpuid_mask_* parameters. This is a problem for developing new
features (which want to be off-by-default but able to be opted in to), debugging,
where it can sometimes be very useful to hide features and see if a problem
reoccurs, and occasionally in security circumstances, where disabling a feature
outright is an easy stop-gap solution.

From the toolstack side, given no other constraints, a guest gets the hypervisor-
max set of features. This set of features is a trade off between what is supported
in the hypervisor, and which features can reasonably be offered without impeding
the migrateability of the guest. There is little provision for features which can
be opted in to at the toolstack level, and those that are are done so via ad-hoc
means.

4 Proposal

First and foremost, split the current max_policy notion into separate max
and default policies. This allows for the provision of features which are unused
by default, but may be opted in to, both at the hypervisor level and the toolstack
level.

At the hypervisor level, max constitutes all the features Xen can use on the
current hardware, while default is the subset thereof which are supported
features, the features which the user has explicitly opted in to, and excluding
any features the user has explicitly opted out of.

A new cpuid= command line option shall be introduced, whose internals are gen-
erated automatically from the featureset ABI. This means that all features added
to include/public/arch-x86/cpufeatureset.h automatically gain command
line control. (RFC: The same top level option can probably be used for non-
feature CPUID data control, although I can’t currently think of any cases where
this would be used Also find a sensible way to express ‘available but not to be
used by Xen’, as per the current smep and smap options.)

At the guest level, max constitutes all the features which can be offered to each
type of guest on this hardware. Derived from Xen’s default policy, it includes
the supported features and explicitly opted in to features, which are appropriate
for the guest.

The guests default policy is then derived from its max, and includes the
supported features which are considered migration safe. (RFC: This distinction
is rather fuzzy, but for example it wouldn’t include things like ITSC by default,
as that is likely to go wrong unless special care is taken.)

All global policies (Xen and guest, max and default) shall be made available to the
toolstack, in a manner similar to the existing XEN_SYSCTL_get_cpu_featureset

3



mechanism. This allows decisions to be taken which include all CPUID data,
not just the feature bitmaps.

New XEN_DOMCTL_{get,set}_cpuid_policy hypercalls will be introduced,
which allows the toolstack to query and set the cpuid policy for a specific domain.
It shall supersede XEN_DOMCTL_set_cpuid, shall fail if Xen is unhappy with
any aspect of the policy during auditing.

When a domain is initially created, the appropriate guests default policy is
duplicated for use. When auditing, Xen shall audit the toolstacks requested
policy against the guests max policy. This allows experimental features or non-
migration-safe features to be opted in to, without those features being imposed
upon all guests automatically.

A guests CPUID policy shall be immutable after construction. This better
matches real hardware, and simplifies the logic in Xen to translate policy alter-
ations into configuration changes.

(RFC: Decide exactly where to fit this. XEN_DOMCTL_max_vcpus perhaps?)
The toolstack shall also have a mechanism to explicitly select topology configu-
ration for the guest, which primarily affects the virtual APIC ID layout, and
has a knock on effect for the APIC ID of the virtual IO-APIC. Xen’s auditing
shall ensure that guests observe values consistent with the guarantees made by
the vendor manuals.

The disable_migrate field shall be dropped. The concept of migrateability is
not boolean; it is a large spectrum, all of which needs to be managed by the
toolstack. The simple case is picking the common subset of features between the
source and destination. This becomes more complicated e.g. if the guest uses
LBR/LER, at which point the toolstack needs to consider hardware with the
same LBR/LER format in addition to just the plain features.

disable_migrate is currently only used to expose ITSC to guests, but there
are cases where is perfectly safe to migrate such a guest, if the destination host
has the same TSC frequency or hardware TSC scaling support.

Finally, disable_migrate doesn’t (and cannot reasonably) be used to inhibit
state gather operations, as this interferes with debugging and monitoring tasks.

4


	Current state
	Issues with the existing hypercalls
	Other problems
	Proposal

