/root/src/xen/xen/arch/x86/hvm/vmx/vvmx.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * vvmx.c: Support virtual VMX for nested virtualization. |
3 | | * |
4 | | * Copyright (c) 2010, Intel Corporation. |
5 | | * Author: Qing He <qing.he@intel.com> |
6 | | * Eddie Dong <eddie.dong@intel.com> |
7 | | * |
8 | | * This program is free software; you can redistribute it and/or modify it |
9 | | * under the terms and conditions of the GNU General Public License, |
10 | | * version 2, as published by the Free Software Foundation. |
11 | | * |
12 | | * This program is distributed in the hope it will be useful, but WITHOUT |
13 | | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
14 | | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
15 | | * more details. |
16 | | * |
17 | | * You should have received a copy of the GNU General Public License along with |
18 | | * this program; If not, see <http://www.gnu.org/licenses/>. |
19 | | * |
20 | | */ |
21 | | |
22 | | #include <asm/types.h> |
23 | | #include <asm/mtrr.h> |
24 | | #include <asm/p2m.h> |
25 | | #include <asm/hvm/ioreq.h> |
26 | | #include <asm/hvm/vmx/vmx.h> |
27 | | #include <asm/hvm/vmx/vvmx.h> |
28 | | #include <asm/hvm/nestedhvm.h> |
29 | | |
30 | | static DEFINE_PER_CPU(u64 *, vvmcs_buf); |
31 | | |
32 | | static void nvmx_purge_vvmcs(struct vcpu *v); |
33 | | |
34 | | static bool nvmx_vcpu_in_vmx(const struct vcpu *v) |
35 | 0 | { |
36 | 0 | return vcpu_2_nvmx(v).vmxon_region_pa != INVALID_PADDR; |
37 | 0 | } |
38 | | |
39 | 0 | #define VMCS_BUF_SIZE 100 |
40 | | |
41 | | int nvmx_cpu_up_prepare(unsigned int cpu) |
42 | 12 | { |
43 | 12 | if ( per_cpu(vvmcs_buf, cpu) != NULL ) |
44 | 0 | return 0; |
45 | 12 | |
46 | 12 | per_cpu(vvmcs_buf, cpu) = xzalloc_array(u64, VMCS_BUF_SIZE); |
47 | 12 | |
48 | 12 | if ( per_cpu(vvmcs_buf, cpu) != NULL ) |
49 | 12 | return 0; |
50 | 12 | |
51 | 0 | return -ENOMEM; |
52 | 12 | } |
53 | | |
54 | | void nvmx_cpu_dead(unsigned int cpu) |
55 | 0 | { |
56 | 0 | xfree(per_cpu(vvmcs_buf, cpu)); |
57 | 0 | per_cpu(vvmcs_buf, cpu) = NULL; |
58 | 0 | } |
59 | | |
60 | | int nvmx_vcpu_initialise(struct vcpu *v) |
61 | 0 | { |
62 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
63 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
64 | 0 | struct page_info *pg = alloc_domheap_page(NULL, 0); |
65 | 0 |
|
66 | 0 | if ( !pg ) |
67 | 0 | { |
68 | 0 | gdprintk(XENLOG_ERR, "nest: allocation for shadow vmcs failed\n"); |
69 | 0 | return -ENOMEM; |
70 | 0 | } |
71 | 0 | nvcpu->nv_n2vmcx_pa = page_to_maddr(pg); |
72 | 0 |
|
73 | 0 | /* non-root VMREAD/VMWRITE bitmap. */ |
74 | 0 | if ( cpu_has_vmx_vmcs_shadowing ) |
75 | 0 | { |
76 | 0 | struct page_info *vmread_bitmap, *vmwrite_bitmap; |
77 | 0 | unsigned long *vw; |
78 | 0 |
|
79 | 0 | vmread_bitmap = alloc_domheap_page(NULL, 0); |
80 | 0 | if ( !vmread_bitmap ) |
81 | 0 | { |
82 | 0 | gdprintk(XENLOG_ERR, "nest: allocation for vmread bitmap failed\n"); |
83 | 0 | return -ENOMEM; |
84 | 0 | } |
85 | 0 | v->arch.hvm_vmx.vmread_bitmap = vmread_bitmap; |
86 | 0 |
|
87 | 0 | clear_domain_page(_mfn(page_to_mfn(vmread_bitmap))); |
88 | 0 |
|
89 | 0 | vmwrite_bitmap = alloc_domheap_page(NULL, 0); |
90 | 0 | if ( !vmwrite_bitmap ) |
91 | 0 | { |
92 | 0 | gdprintk(XENLOG_ERR, "nest: allocation for vmwrite bitmap failed\n"); |
93 | 0 | return -ENOMEM; |
94 | 0 | } |
95 | 0 | v->arch.hvm_vmx.vmwrite_bitmap = vmwrite_bitmap; |
96 | 0 |
|
97 | 0 | vw = __map_domain_page(vmwrite_bitmap); |
98 | 0 | clear_page(vw); |
99 | 0 |
|
100 | 0 | /* |
101 | 0 | * For the following 6 encodings, we need to handle them in VMM. |
102 | 0 | * Let them vmexit as usual. |
103 | 0 | */ |
104 | 0 | set_bit(IO_BITMAP_A, vw); |
105 | 0 | set_bit(VMCS_HIGH(IO_BITMAP_A), vw); |
106 | 0 | set_bit(IO_BITMAP_B, vw); |
107 | 0 | set_bit(VMCS_HIGH(IO_BITMAP_B), vw); |
108 | 0 | set_bit(MSR_BITMAP, vw); |
109 | 0 | set_bit(VMCS_HIGH(MSR_BITMAP), vw); |
110 | 0 |
|
111 | 0 | unmap_domain_page(vw); |
112 | 0 | } |
113 | 0 |
|
114 | 0 | nvmx->ept.enabled = 0; |
115 | 0 | nvmx->guest_vpid = 0; |
116 | 0 | nvmx->vmxon_region_pa = INVALID_PADDR; |
117 | 0 | nvcpu->nv_vvmcx = NULL; |
118 | 0 | nvcpu->nv_vvmcxaddr = INVALID_PADDR; |
119 | 0 | nvmx->intr.intr_info = 0; |
120 | 0 | nvmx->intr.error_code = 0; |
121 | 0 | nvmx->iobitmap[0] = NULL; |
122 | 0 | nvmx->iobitmap[1] = NULL; |
123 | 0 | nvmx->msrbitmap = NULL; |
124 | 0 | INIT_LIST_HEAD(&nvmx->launched_list); |
125 | 0 | return 0; |
126 | 0 | } |
127 | | |
128 | | void nvmx_vcpu_destroy(struct vcpu *v) |
129 | 0 | { |
130 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
131 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
132 | 0 | struct vvmcs_list *item, *n; |
133 | 0 |
|
134 | 0 | /* |
135 | 0 | * When destroying the vcpu, it may be running on behalf of L2 guest. |
136 | 0 | * Therefore we need to switch the VMCS pointer back to the L1 VMCS, |
137 | 0 | * in order to avoid double free of L2 VMCS and the possible memory |
138 | 0 | * leak of L1 VMCS page. |
139 | 0 | */ |
140 | 0 | if ( nvcpu->nv_n1vmcx_pa ) |
141 | 0 | v->arch.hvm_vmx.vmcs_pa = nvcpu->nv_n1vmcx_pa; |
142 | 0 |
|
143 | 0 | if ( nvcpu->nv_n2vmcx_pa ) |
144 | 0 | { |
145 | 0 | __vmpclear(nvcpu->nv_n2vmcx_pa); |
146 | 0 | free_domheap_page(maddr_to_page(nvcpu->nv_n2vmcx_pa)); |
147 | 0 | nvcpu->nv_n2vmcx_pa = 0; |
148 | 0 | } |
149 | 0 |
|
150 | 0 | /* Must also cope with nvmx_vcpu_initialise() not having got called. */ |
151 | 0 | if ( nvmx->launched_list.next ) |
152 | 0 | list_for_each_entry_safe(item, n, &nvmx->launched_list, node) |
153 | 0 | { |
154 | 0 | list_del(&item->node); |
155 | 0 | xfree(item); |
156 | 0 | } |
157 | 0 |
|
158 | 0 | if ( v->arch.hvm_vmx.vmread_bitmap ) |
159 | 0 | { |
160 | 0 | free_domheap_page(v->arch.hvm_vmx.vmread_bitmap); |
161 | 0 | v->arch.hvm_vmx.vmread_bitmap = NULL; |
162 | 0 | } |
163 | 0 | if ( v->arch.hvm_vmx.vmwrite_bitmap ) |
164 | 0 | { |
165 | 0 | free_domheap_page(v->arch.hvm_vmx.vmwrite_bitmap); |
166 | 0 | v->arch.hvm_vmx.vmwrite_bitmap = NULL; |
167 | 0 | } |
168 | 0 | } |
169 | | |
170 | | void nvmx_domain_relinquish_resources(struct domain *d) |
171 | 0 | { |
172 | 0 | struct vcpu *v; |
173 | 0 |
|
174 | 0 | for_each_vcpu ( d, v ) |
175 | 0 | nvmx_purge_vvmcs(v); |
176 | 0 | } |
177 | | |
178 | | int nvmx_vcpu_reset(struct vcpu *v) |
179 | 0 | { |
180 | 0 | return 0; |
181 | 0 | } |
182 | | |
183 | | uint64_t nvmx_vcpu_eptp_base(struct vcpu *v) |
184 | 0 | { |
185 | 0 | return get_vvmcs(v, EPT_POINTER) & PAGE_MASK; |
186 | 0 | } |
187 | | |
188 | | bool_t nvmx_ept_enabled(struct vcpu *v) |
189 | 0 | { |
190 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
191 | 0 |
|
192 | 0 | return !!(nvmx->ept.enabled); |
193 | 0 | } |
194 | | |
195 | | struct vmx_inst_decoded { |
196 | 0 | #define VMX_INST_MEMREG_TYPE_MEMORY 0 |
197 | 0 | #define VMX_INST_MEMREG_TYPE_REG 1 |
198 | | int type; |
199 | | union { |
200 | | struct { |
201 | | unsigned long mem; |
202 | | unsigned int len; |
203 | | }; |
204 | | enum vmx_regs_enc reg1; |
205 | | }; |
206 | | |
207 | | enum vmx_regs_enc reg2; |
208 | | }; |
209 | | |
210 | | enum vmx_ops_result { |
211 | | VMSUCCEED, |
212 | | VMFAIL_VALID, |
213 | | VMFAIL_INVALID, |
214 | | }; |
215 | | |
216 | | #define CASE_SET_REG(REG, reg) \ |
217 | | case VMX_REG_ ## REG: regs->reg = value; break |
218 | | #define CASE_GET_REG(REG, reg) \ |
219 | | case VMX_REG_ ## REG: value = regs->reg; break |
220 | | |
221 | | static int vvmcs_offset(u32 width, u32 type, u32 index) |
222 | 0 | { |
223 | 0 | int offset; |
224 | 0 |
|
225 | 0 | offset = (index & 0x1f) | type << 5 | width << 7; |
226 | 0 |
|
227 | 0 | if ( offset == 0 ) /* vpid */ |
228 | 0 | offset = 0x3f; |
229 | 0 |
|
230 | 0 | return offset; |
231 | 0 | } |
232 | | |
233 | | u64 get_vvmcs_virtual(void *vvmcs, u32 vmcs_encoding) |
234 | 0 | { |
235 | 0 | union vmcs_encoding enc; |
236 | 0 | u64 *content = (u64 *) vvmcs; |
237 | 0 | int offset; |
238 | 0 | u64 res; |
239 | 0 |
|
240 | 0 | enc.word = vmcs_encoding; |
241 | 0 | offset = vvmcs_offset(enc.width, enc.type, enc.index); |
242 | 0 | res = content[offset]; |
243 | 0 |
|
244 | 0 | switch ( enc.width ) { |
245 | 0 | case VVMCS_WIDTH_16: |
246 | 0 | res &= 0xffff; |
247 | 0 | break; |
248 | 0 | case VVMCS_WIDTH_64: |
249 | 0 | if ( enc.access_type ) |
250 | 0 | res >>= 32; |
251 | 0 | break; |
252 | 0 | case VVMCS_WIDTH_32: |
253 | 0 | res &= 0xffffffff; |
254 | 0 | break; |
255 | 0 | case VVMCS_WIDTH_NATURAL: |
256 | 0 | default: |
257 | 0 | break; |
258 | 0 | } |
259 | 0 |
|
260 | 0 | return res; |
261 | 0 | } |
262 | | |
263 | | u64 get_vvmcs_real(const struct vcpu *v, u32 encoding) |
264 | 0 | { |
265 | 0 | return virtual_vmcs_vmread(v, encoding); |
266 | 0 | } |
267 | | |
268 | | enum vmx_insn_errno get_vvmcs_virtual_safe(void *vvmcs, u32 encoding, u64 *val) |
269 | 0 | { |
270 | 0 | *val = get_vvmcs_virtual(vvmcs, encoding); |
271 | 0 |
|
272 | 0 | /* |
273 | 0 | * TODO: This should not always succeed. Fields and values need to be |
274 | 0 | * audited against the features offered to the guest in the VT-x MSRs. |
275 | 0 | * This should be fixed when the MSR levelling work is started, at which |
276 | 0 | * point there will be a cpuid_policy-like object. |
277 | 0 | */ |
278 | 0 | return VMX_INSN_SUCCEED; |
279 | 0 | } |
280 | | |
281 | | enum vmx_insn_errno get_vvmcs_real_safe(const struct vcpu *v, u32 encoding, |
282 | | u64 *val) |
283 | 0 | { |
284 | 0 | return virtual_vmcs_vmread_safe(v, encoding, val); |
285 | 0 | } |
286 | | |
287 | | void set_vvmcs_virtual(void *vvmcs, u32 vmcs_encoding, u64 val) |
288 | 0 | { |
289 | 0 | union vmcs_encoding enc; |
290 | 0 | u64 *content = (u64 *) vvmcs; |
291 | 0 | int offset; |
292 | 0 | u64 res; |
293 | 0 |
|
294 | 0 | enc.word = vmcs_encoding; |
295 | 0 | offset = vvmcs_offset(enc.width, enc.type, enc.index); |
296 | 0 | res = content[offset]; |
297 | 0 |
|
298 | 0 | switch ( enc.width ) { |
299 | 0 | case VVMCS_WIDTH_16: |
300 | 0 | res = val & 0xffff; |
301 | 0 | break; |
302 | 0 | case VVMCS_WIDTH_64: |
303 | 0 | if ( enc.access_type ) |
304 | 0 | { |
305 | 0 | res &= 0xffffffff; |
306 | 0 | res |= val << 32; |
307 | 0 | } |
308 | 0 | else |
309 | 0 | res = val; |
310 | 0 | break; |
311 | 0 | case VVMCS_WIDTH_32: |
312 | 0 | res = val & 0xffffffff; |
313 | 0 | break; |
314 | 0 | case VVMCS_WIDTH_NATURAL: |
315 | 0 | default: |
316 | 0 | res = val; |
317 | 0 | break; |
318 | 0 | } |
319 | 0 |
|
320 | 0 | content[offset] = res; |
321 | 0 | } |
322 | | |
323 | | void set_vvmcs_real(const struct vcpu *v, u32 encoding, u64 val) |
324 | 0 | { |
325 | 0 | virtual_vmcs_vmwrite(v, encoding, val); |
326 | 0 | } |
327 | | |
328 | | enum vmx_insn_errno set_vvmcs_virtual_safe(void *vvmcs, u32 encoding, u64 val) |
329 | 0 | { |
330 | 0 | set_vvmcs_virtual(vvmcs, encoding, val); |
331 | 0 |
|
332 | 0 | /* |
333 | 0 | * TODO: This should not always succeed. Fields and values need to be |
334 | 0 | * audited against the features offered to the guest in the VT-x MSRs. |
335 | 0 | * This should be fixed when the MSR levelling work is started, at which |
336 | 0 | * point there will be a cpuid_policy-like object. |
337 | 0 | */ |
338 | 0 | return VMX_INSN_SUCCEED; |
339 | 0 | } |
340 | | |
341 | | enum vmx_insn_errno set_vvmcs_real_safe(const struct vcpu *v, u32 encoding, |
342 | | u64 val) |
343 | 0 | { |
344 | 0 | return virtual_vmcs_vmwrite_safe(v, encoding, val); |
345 | 0 | } |
346 | | |
347 | | static unsigned long reg_read(struct cpu_user_regs *regs, |
348 | | enum vmx_regs_enc index) |
349 | 0 | { |
350 | 0 | unsigned long *pval = decode_register(index, regs, 0); |
351 | 0 |
|
352 | 0 | return *pval; |
353 | 0 | } |
354 | | |
355 | | static void reg_write(struct cpu_user_regs *regs, |
356 | | enum vmx_regs_enc index, |
357 | | unsigned long value) |
358 | 0 | { |
359 | 0 | unsigned long *pval = decode_register(index, regs, 0); |
360 | 0 |
|
361 | 0 | *pval = value; |
362 | 0 | } |
363 | | |
364 | | static inline u32 __n2_pin_exec_control(struct vcpu *v) |
365 | 0 | { |
366 | 0 | return get_vvmcs(v, PIN_BASED_VM_EXEC_CONTROL); |
367 | 0 | } |
368 | | |
369 | | static inline u32 __n2_exec_control(struct vcpu *v) |
370 | 0 | { |
371 | 0 | return get_vvmcs(v, CPU_BASED_VM_EXEC_CONTROL); |
372 | 0 | } |
373 | | |
374 | | static inline u32 __n2_secondary_exec_control(struct vcpu *v) |
375 | 0 | { |
376 | 0 | u64 second_ctrl = 0; |
377 | 0 |
|
378 | 0 | if ( __n2_exec_control(v) & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS ) |
379 | 0 | second_ctrl = get_vvmcs(v, SECONDARY_VM_EXEC_CONTROL); |
380 | 0 |
|
381 | 0 | return second_ctrl; |
382 | 0 | } |
383 | | |
384 | | static int vmx_inst_check_privilege(struct cpu_user_regs *regs, int vmxop_check) |
385 | 0 | { |
386 | 0 | struct vcpu *v = current; |
387 | 0 |
|
388 | 0 | if ( vmxop_check ) |
389 | 0 | { |
390 | 0 | if ( !(v->arch.hvm_vcpu.guest_cr[0] & X86_CR0_PE) || |
391 | 0 | !(v->arch.hvm_vcpu.guest_cr[4] & X86_CR4_VMXE) ) |
392 | 0 | goto invalid_op; |
393 | 0 | } |
394 | 0 | else if ( !nvmx_vcpu_in_vmx(v) ) |
395 | 0 | goto invalid_op; |
396 | 0 |
|
397 | 0 | if ( vmx_guest_x86_mode(v) < (hvm_long_mode_active(v) ? 8 : 2) ) |
398 | 0 | goto invalid_op; |
399 | 0 | else if ( nestedhvm_vcpu_in_guestmode(v) ) |
400 | 0 | goto vmexit; |
401 | 0 |
|
402 | 0 | if ( vmx_get_cpl() > 0 ) |
403 | 0 | goto gp_fault; |
404 | 0 |
|
405 | 0 | return X86EMUL_OKAY; |
406 | 0 |
|
407 | 0 | vmexit: |
408 | 0 | gdprintk(XENLOG_ERR, "vmx_inst_check_privilege: vmexit\n"); |
409 | 0 | vcpu_nestedhvm(v).nv_vmexit_pending = 1; |
410 | 0 | return X86EMUL_EXCEPTION; |
411 | 0 | |
412 | 0 | invalid_op: |
413 | 0 | gdprintk(XENLOG_ERR, "vmx_inst_check_privilege: invalid_op\n"); |
414 | 0 | hvm_inject_hw_exception(TRAP_invalid_op, X86_EVENT_NO_EC); |
415 | 0 | return X86EMUL_EXCEPTION; |
416 | 0 |
|
417 | 0 | gp_fault: |
418 | 0 | gdprintk(XENLOG_ERR, "vmx_inst_check_privilege: gp_fault\n"); |
419 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
420 | 0 | return X86EMUL_EXCEPTION; |
421 | 0 | } |
422 | | |
423 | | static int decode_vmx_inst(struct cpu_user_regs *regs, |
424 | | struct vmx_inst_decoded *decode, |
425 | | unsigned long *poperandS, int vmxon_check) |
426 | 0 | { |
427 | 0 | struct vcpu *v = current; |
428 | 0 | union vmx_inst_info info; |
429 | 0 | struct segment_register seg; |
430 | 0 | unsigned long base, index, seg_base, disp, offset; |
431 | 0 | int scale, size; |
432 | 0 |
|
433 | 0 | if ( vmx_inst_check_privilege(regs, vmxon_check) != X86EMUL_OKAY ) |
434 | 0 | return X86EMUL_EXCEPTION; |
435 | 0 |
|
436 | 0 | __vmread(VMX_INSTRUCTION_INFO, &offset); |
437 | 0 | info.word = offset; |
438 | 0 |
|
439 | 0 | if ( info.fields.memreg ) { |
440 | 0 | decode->type = VMX_INST_MEMREG_TYPE_REG; |
441 | 0 | decode->reg1 = info.fields.reg1; |
442 | 0 | if ( poperandS != NULL ) |
443 | 0 | *poperandS = reg_read(regs, decode->reg1); |
444 | 0 | } |
445 | 0 | else |
446 | 0 | { |
447 | 0 | bool mode_64bit = (vmx_guest_x86_mode(v) == 8); |
448 | 0 |
|
449 | 0 | decode->type = VMX_INST_MEMREG_TYPE_MEMORY; |
450 | 0 |
|
451 | 0 | if ( info.fields.segment > x86_seg_gs ) |
452 | 0 | goto gp_fault; |
453 | 0 | hvm_get_segment_register(v, info.fields.segment, &seg); |
454 | 0 | seg_base = seg.base; |
455 | 0 |
|
456 | 0 | base = info.fields.base_reg_invalid ? 0 : |
457 | 0 | reg_read(regs, info.fields.base_reg); |
458 | 0 |
|
459 | 0 | index = info.fields.index_reg_invalid ? 0 : |
460 | 0 | reg_read(regs, info.fields.index_reg); |
461 | 0 |
|
462 | 0 | scale = 1 << info.fields.scaling; |
463 | 0 |
|
464 | 0 | __vmread(EXIT_QUALIFICATION, &disp); |
465 | 0 |
|
466 | 0 | size = 1 << (info.fields.addr_size + 1); |
467 | 0 |
|
468 | 0 | offset = base + index * scale + disp; |
469 | 0 | base = !mode_64bit || info.fields.segment >= x86_seg_fs ? |
470 | 0 | seg_base + offset : offset; |
471 | 0 | if ( offset + size - 1 < offset || |
472 | 0 | (mode_64bit ? |
473 | 0 | !is_canonical_address((long)base < 0 ? base : |
474 | 0 | base + size - 1) : |
475 | 0 | offset + size - 1 > seg.limit) ) |
476 | 0 | goto gp_fault; |
477 | 0 |
|
478 | 0 | if ( poperandS != NULL ) |
479 | 0 | { |
480 | 0 | pagefault_info_t pfinfo; |
481 | 0 | int rc = hvm_copy_from_guest_linear(poperandS, base, size, |
482 | 0 | 0, &pfinfo); |
483 | 0 |
|
484 | 0 | if ( rc == HVMTRANS_bad_linear_to_gfn ) |
485 | 0 | hvm_inject_page_fault(pfinfo.ec, pfinfo.linear); |
486 | 0 | if ( rc != HVMTRANS_okay ) |
487 | 0 | return X86EMUL_EXCEPTION; |
488 | 0 | } |
489 | 0 | decode->mem = base; |
490 | 0 | decode->len = size; |
491 | 0 | } |
492 | 0 |
|
493 | 0 | decode->reg2 = info.fields.reg2; |
494 | 0 |
|
495 | 0 | return X86EMUL_OKAY; |
496 | 0 |
|
497 | 0 | gp_fault: |
498 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
499 | 0 | return X86EMUL_EXCEPTION; |
500 | 0 | } |
501 | | |
502 | | static void vmsucceed(struct cpu_user_regs *regs) |
503 | 0 | { |
504 | 0 | regs->eflags &= ~X86_EFLAGS_ARITH_MASK; |
505 | 0 | } |
506 | | |
507 | | static void vmfail_valid(struct cpu_user_regs *regs, enum vmx_insn_errno errno) |
508 | 0 | { |
509 | 0 | struct vcpu *v = current; |
510 | 0 | unsigned int eflags = regs->eflags; |
511 | 0 |
|
512 | 0 | regs->eflags = (eflags & ~X86_EFLAGS_ARITH_MASK) | X86_EFLAGS_ZF; |
513 | 0 | set_vvmcs(v, VM_INSTRUCTION_ERROR, errno); |
514 | 0 | } |
515 | | |
516 | | static void vmfail_invalid(struct cpu_user_regs *regs) |
517 | 0 | { |
518 | 0 | unsigned int eflags = regs->eflags; |
519 | 0 |
|
520 | 0 | regs->eflags = (eflags & ~X86_EFLAGS_ARITH_MASK) | X86_EFLAGS_CF; |
521 | 0 | } |
522 | | |
523 | | static void vmfail(struct cpu_user_regs *regs, enum vmx_insn_errno errno) |
524 | 0 | { |
525 | 0 | if ( errno == VMX_INSN_SUCCEED ) |
526 | 0 | return; |
527 | 0 |
|
528 | 0 | if ( vcpu_nestedhvm(current).nv_vvmcxaddr != INVALID_PADDR && |
529 | 0 | errno != VMX_INSN_FAIL_INVALID ) |
530 | 0 | vmfail_valid(regs, errno); |
531 | 0 | else |
532 | 0 | vmfail_invalid(regs); |
533 | 0 | } |
534 | | |
535 | | bool_t nvmx_intercepts_exception( |
536 | | struct vcpu *v, unsigned int vector, int error_code) |
537 | 0 | { |
538 | 0 | u32 exception_bitmap, pfec_match=0, pfec_mask=0; |
539 | 0 | int r; |
540 | 0 |
|
541 | 0 | ASSERT(vector < 32); |
542 | 0 |
|
543 | 0 | exception_bitmap = get_vvmcs(v, EXCEPTION_BITMAP); |
544 | 0 | r = exception_bitmap & (1 << vector) ? 1: 0; |
545 | 0 |
|
546 | 0 | if ( vector == TRAP_page_fault ) |
547 | 0 | { |
548 | 0 | pfec_match = get_vvmcs(v, PAGE_FAULT_ERROR_CODE_MATCH); |
549 | 0 | pfec_mask = get_vvmcs(v, PAGE_FAULT_ERROR_CODE_MASK); |
550 | 0 | if ( (error_code & pfec_mask) != pfec_match ) |
551 | 0 | r = !r; |
552 | 0 | } |
553 | 0 | return r; |
554 | 0 | } |
555 | | |
556 | | /* |
557 | | * Nested VMX uses "strict" condition to exit from |
558 | | * L2 guest if either L1 VMM or L0 VMM expect to exit. |
559 | | */ |
560 | | static inline u32 __shadow_control(struct vcpu *v, |
561 | | unsigned int field, |
562 | | u32 host_value) |
563 | 0 | { |
564 | 0 | return get_vvmcs(v, field) | host_value; |
565 | 0 | } |
566 | | |
567 | | static void set_shadow_control(struct vcpu *v, |
568 | | unsigned int field, |
569 | | u32 host_value) |
570 | 0 | { |
571 | 0 | __vmwrite(field, __shadow_control(v, field, host_value)); |
572 | 0 | } |
573 | | |
574 | | unsigned long *_shadow_io_bitmap(struct vcpu *v) |
575 | 0 | { |
576 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
577 | 0 | int port80, portED; |
578 | 0 | u8 *bitmap; |
579 | 0 |
|
580 | 0 | bitmap = nvmx->iobitmap[0]; |
581 | 0 | port80 = bitmap[0x80 >> 3] & (1 << (0x80 & 0x7)) ? 1 : 0; |
582 | 0 | portED = bitmap[0xed >> 3] & (1 << (0xed & 0x7)) ? 1 : 0; |
583 | 0 |
|
584 | 0 | return nestedhvm_vcpu_iomap_get(port80, portED); |
585 | 0 | } |
586 | | |
587 | | void nvmx_update_exec_control(struct vcpu *v, u32 host_cntrl) |
588 | 0 | { |
589 | 0 | u32 pio_cntrl = (CPU_BASED_ACTIVATE_IO_BITMAP |
590 | 0 | | CPU_BASED_UNCOND_IO_EXITING); |
591 | 0 | unsigned long *bitmap; |
592 | 0 | u32 shadow_cntrl; |
593 | 0 | |
594 | 0 | shadow_cntrl = __n2_exec_control(v); |
595 | 0 | pio_cntrl &= shadow_cntrl; |
596 | 0 | /* Enforce the removed features */ |
597 | 0 | shadow_cntrl &= ~(CPU_BASED_ACTIVATE_MSR_BITMAP |
598 | 0 | | CPU_BASED_ACTIVATE_IO_BITMAP |
599 | 0 | | CPU_BASED_UNCOND_IO_EXITING); |
600 | 0 | shadow_cntrl |= host_cntrl; |
601 | 0 | if ( pio_cntrl == CPU_BASED_UNCOND_IO_EXITING ) { |
602 | 0 | /* L1 VMM intercepts all I/O instructions */ |
603 | 0 | shadow_cntrl |= CPU_BASED_UNCOND_IO_EXITING; |
604 | 0 | shadow_cntrl &= ~CPU_BASED_ACTIVATE_IO_BITMAP; |
605 | 0 | } |
606 | 0 | else { |
607 | 0 | /* Use IO_BITMAP in shadow */ |
608 | 0 | if ( pio_cntrl == 0 ) { |
609 | 0 | /* |
610 | 0 | * L1 VMM doesn't intercept IO instruction. |
611 | 0 | * Use host configuration and reset IO_BITMAP |
612 | 0 | */ |
613 | 0 | bitmap = hvm_io_bitmap; |
614 | 0 | } |
615 | 0 | else { |
616 | 0 | /* use IO bitmap */ |
617 | 0 | bitmap = _shadow_io_bitmap(v); |
618 | 0 | } |
619 | 0 | __vmwrite(IO_BITMAP_A, virt_to_maddr(bitmap)); |
620 | 0 | __vmwrite(IO_BITMAP_B, virt_to_maddr(bitmap) + PAGE_SIZE); |
621 | 0 | } |
622 | 0 |
|
623 | 0 | /* TODO: change L0 intr window to MTF or NMI window */ |
624 | 0 | __vmwrite(CPU_BASED_VM_EXEC_CONTROL, shadow_cntrl); |
625 | 0 | } |
626 | | |
627 | | void nvmx_update_secondary_exec_control(struct vcpu *v, |
628 | | unsigned long host_cntrl) |
629 | 0 | { |
630 | 0 | u32 shadow_cntrl; |
631 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
632 | 0 | u32 apicv_bit = SECONDARY_EXEC_APIC_REGISTER_VIRT | |
633 | 0 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; |
634 | 0 |
|
635 | 0 | host_cntrl &= ~apicv_bit; |
636 | 0 | shadow_cntrl = get_vvmcs(v, SECONDARY_VM_EXEC_CONTROL); |
637 | 0 |
|
638 | 0 | /* No vAPIC-v support, so it shouldn't be set in vmcs12. */ |
639 | 0 | ASSERT(!(shadow_cntrl & apicv_bit)); |
640 | 0 |
|
641 | 0 | nvmx->ept.enabled = !!(shadow_cntrl & SECONDARY_EXEC_ENABLE_EPT); |
642 | 0 | shadow_cntrl |= host_cntrl; |
643 | 0 | __vmwrite(SECONDARY_VM_EXEC_CONTROL, shadow_cntrl); |
644 | 0 | } |
645 | | |
646 | | static void nvmx_update_pin_control(struct vcpu *v, unsigned long host_cntrl) |
647 | 0 | { |
648 | 0 | u32 shadow_cntrl; |
649 | 0 |
|
650 | 0 | host_cntrl &= ~PIN_BASED_POSTED_INTERRUPT; |
651 | 0 | shadow_cntrl = get_vvmcs(v, PIN_BASED_VM_EXEC_CONTROL); |
652 | 0 |
|
653 | 0 | /* No vAPIC-v support, so it shouldn't be set in vmcs12. */ |
654 | 0 | ASSERT(!(shadow_cntrl & PIN_BASED_POSTED_INTERRUPT)); |
655 | 0 |
|
656 | 0 | shadow_cntrl |= host_cntrl; |
657 | 0 | __vmwrite(PIN_BASED_VM_EXEC_CONTROL, shadow_cntrl); |
658 | 0 | } |
659 | | |
660 | | static void nvmx_update_exit_control(struct vcpu *v, unsigned long host_cntrl) |
661 | 0 | { |
662 | 0 | u32 shadow_cntrl; |
663 | 0 |
|
664 | 0 | shadow_cntrl = get_vvmcs(v, VM_EXIT_CONTROLS); |
665 | 0 | shadow_cntrl &= ~(VM_EXIT_SAVE_DEBUG_CNTRLS |
666 | 0 | | VM_EXIT_LOAD_HOST_PAT |
667 | 0 | | VM_EXIT_LOAD_HOST_EFER |
668 | 0 | | VM_EXIT_LOAD_PERF_GLOBAL_CTRL); |
669 | 0 | shadow_cntrl |= host_cntrl; |
670 | 0 | __vmwrite(VM_EXIT_CONTROLS, shadow_cntrl); |
671 | 0 | } |
672 | | |
673 | | static void nvmx_update_entry_control(struct vcpu *v) |
674 | 0 | { |
675 | 0 | u32 shadow_cntrl; |
676 | 0 |
|
677 | 0 | shadow_cntrl = get_vvmcs(v, VM_ENTRY_CONTROLS); |
678 | 0 | shadow_cntrl &= ~(VM_ENTRY_LOAD_GUEST_PAT |
679 | 0 | | VM_ENTRY_LOAD_GUEST_EFER |
680 | 0 | | VM_ENTRY_LOAD_PERF_GLOBAL_CTRL); |
681 | 0 | __vmwrite(VM_ENTRY_CONTROLS, shadow_cntrl); |
682 | 0 | } |
683 | | |
684 | | void nvmx_update_exception_bitmap(struct vcpu *v, unsigned long value) |
685 | 0 | { |
686 | 0 | set_shadow_control(v, EXCEPTION_BITMAP, value); |
687 | 0 | } |
688 | | |
689 | | static void nvmx_update_apic_access_address(struct vcpu *v) |
690 | 0 | { |
691 | 0 | u32 ctrl; |
692 | 0 |
|
693 | 0 | ctrl = __n2_secondary_exec_control(v); |
694 | 0 | if ( ctrl & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES ) |
695 | 0 | { |
696 | 0 | p2m_type_t p2mt; |
697 | 0 | unsigned long apic_gpfn; |
698 | 0 | struct page_info *apic_pg; |
699 | 0 |
|
700 | 0 | apic_gpfn = get_vvmcs(v, APIC_ACCESS_ADDR) >> PAGE_SHIFT; |
701 | 0 | apic_pg = get_page_from_gfn(v->domain, apic_gpfn, &p2mt, P2M_ALLOC); |
702 | 0 | ASSERT(apic_pg && !p2m_is_paging(p2mt)); |
703 | 0 | __vmwrite(APIC_ACCESS_ADDR, page_to_maddr(apic_pg)); |
704 | 0 | put_page(apic_pg); |
705 | 0 | } |
706 | 0 | else |
707 | 0 | __vmwrite(APIC_ACCESS_ADDR, 0); |
708 | 0 | } |
709 | | |
710 | | static void nvmx_update_virtual_apic_address(struct vcpu *v) |
711 | 0 | { |
712 | 0 | u32 ctrl; |
713 | 0 |
|
714 | 0 | ctrl = __n2_exec_control(v); |
715 | 0 | if ( ctrl & CPU_BASED_TPR_SHADOW ) |
716 | 0 | { |
717 | 0 | p2m_type_t p2mt; |
718 | 0 | unsigned long vapic_gpfn; |
719 | 0 | struct page_info *vapic_pg; |
720 | 0 |
|
721 | 0 | vapic_gpfn = get_vvmcs(v, VIRTUAL_APIC_PAGE_ADDR) >> PAGE_SHIFT; |
722 | 0 | vapic_pg = get_page_from_gfn(v->domain, vapic_gpfn, &p2mt, P2M_ALLOC); |
723 | 0 | ASSERT(vapic_pg && !p2m_is_paging(p2mt)); |
724 | 0 | __vmwrite(VIRTUAL_APIC_PAGE_ADDR, page_to_maddr(vapic_pg)); |
725 | 0 | put_page(vapic_pg); |
726 | 0 | } |
727 | 0 | else |
728 | 0 | __vmwrite(VIRTUAL_APIC_PAGE_ADDR, 0); |
729 | 0 | } |
730 | | |
731 | | static void nvmx_update_tpr_threshold(struct vcpu *v) |
732 | 0 | { |
733 | 0 | u32 ctrl = __n2_exec_control(v); |
734 | 0 |
|
735 | 0 | if ( ctrl & CPU_BASED_TPR_SHADOW ) |
736 | 0 | __vmwrite(TPR_THRESHOLD, get_vvmcs(v, TPR_THRESHOLD)); |
737 | 0 | else |
738 | 0 | __vmwrite(TPR_THRESHOLD, 0); |
739 | 0 | } |
740 | | |
741 | | static void nvmx_update_pfec(struct vcpu *v) |
742 | 0 | { |
743 | 0 | __vmwrite(PAGE_FAULT_ERROR_CODE_MASK, |
744 | 0 | get_vvmcs(v, PAGE_FAULT_ERROR_CODE_MASK)); |
745 | 0 | __vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, |
746 | 0 | get_vvmcs(v, PAGE_FAULT_ERROR_CODE_MATCH)); |
747 | 0 | } |
748 | | |
749 | | static void __clear_current_vvmcs(struct vcpu *v) |
750 | 0 | { |
751 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
752 | 0 | |
753 | 0 | if ( nvcpu->nv_n2vmcx_pa ) |
754 | 0 | __vmpclear(nvcpu->nv_n2vmcx_pa); |
755 | 0 | } |
756 | | |
757 | | /* |
758 | | * Refreshes the MSR bitmap mapping for the current nested vcpu. Returns true |
759 | | * for a successful mapping, and returns false for MSR_BITMAP parameter errors |
760 | | * or gfn mapping errors. |
761 | | */ |
762 | | static bool __must_check _map_msr_bitmap(struct vcpu *v) |
763 | 0 | { |
764 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
765 | 0 | uint64_t gpa; |
766 | 0 |
|
767 | 0 | if ( nvmx->msrbitmap ) |
768 | 0 | { |
769 | 0 | hvm_unmap_guest_frame(nvmx->msrbitmap, 1); |
770 | 0 | nvmx->msrbitmap = NULL; |
771 | 0 | } |
772 | 0 |
|
773 | 0 | gpa = get_vvmcs(v, MSR_BITMAP); |
774 | 0 |
|
775 | 0 | if ( !IS_ALIGNED(gpa, PAGE_SIZE) ) |
776 | 0 | return false; |
777 | 0 |
|
778 | 0 | nvmx->msrbitmap = hvm_map_guest_frame_ro(gpa >> PAGE_SHIFT, 1); |
779 | 0 |
|
780 | 0 | return nvmx->msrbitmap != NULL; |
781 | 0 | } |
782 | | |
783 | | static bool_t __must_check _map_io_bitmap(struct vcpu *v, u64 vmcs_reg) |
784 | 0 | { |
785 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
786 | 0 | unsigned long gpa; |
787 | 0 | int index; |
788 | 0 |
|
789 | 0 | index = vmcs_reg == IO_BITMAP_A ? 0 : 1; |
790 | 0 | if (nvmx->iobitmap[index]) |
791 | 0 | hvm_unmap_guest_frame(nvmx->iobitmap[index], 1); |
792 | 0 | gpa = get_vvmcs(v, vmcs_reg); |
793 | 0 | nvmx->iobitmap[index] = hvm_map_guest_frame_ro(gpa >> PAGE_SHIFT, 1); |
794 | 0 |
|
795 | 0 | return nvmx->iobitmap[index] != NULL; |
796 | 0 | } |
797 | | |
798 | | static inline bool_t __must_check map_io_bitmap_all(struct vcpu *v) |
799 | 0 | { |
800 | 0 | return _map_io_bitmap(v, IO_BITMAP_A) && |
801 | 0 | _map_io_bitmap(v, IO_BITMAP_B); |
802 | 0 | } |
803 | | |
804 | | static void nvmx_purge_vvmcs(struct vcpu *v) |
805 | 0 | { |
806 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
807 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
808 | 0 | int i; |
809 | 0 |
|
810 | 0 | __clear_current_vvmcs(v); |
811 | 0 | if ( nvcpu->nv_vvmcxaddr != INVALID_PADDR ) |
812 | 0 | hvm_unmap_guest_frame(nvcpu->nv_vvmcx, 1); |
813 | 0 | nvcpu->nv_vvmcx = NULL; |
814 | 0 | nvcpu->nv_vvmcxaddr = INVALID_PADDR; |
815 | 0 | v->arch.hvm_vmx.vmcs_shadow_maddr = 0; |
816 | 0 | for (i=0; i<2; i++) { |
817 | 0 | if ( nvmx->iobitmap[i] ) { |
818 | 0 | hvm_unmap_guest_frame(nvmx->iobitmap[i], 1); |
819 | 0 | nvmx->iobitmap[i] = NULL; |
820 | 0 | } |
821 | 0 | } |
822 | 0 | if ( nvmx->msrbitmap ) { |
823 | 0 | hvm_unmap_guest_frame(nvmx->msrbitmap, 1); |
824 | 0 | nvmx->msrbitmap = NULL; |
825 | 0 | } |
826 | 0 | } |
827 | | |
828 | | u64 nvmx_get_tsc_offset(struct vcpu *v) |
829 | 0 | { |
830 | 0 | u64 offset = 0; |
831 | 0 |
|
832 | 0 | if ( get_vvmcs(v, CPU_BASED_VM_EXEC_CONTROL) & |
833 | 0 | CPU_BASED_USE_TSC_OFFSETING ) |
834 | 0 | offset = get_vvmcs(v, TSC_OFFSET); |
835 | 0 |
|
836 | 0 | return offset; |
837 | 0 | } |
838 | | |
839 | | /* |
840 | | * Context synchronized between shadow and virtual VMCS. |
841 | | */ |
842 | | static const u16 vmcs_gstate_field[] = { |
843 | | /* 16 BITS */ |
844 | | GUEST_ES_SELECTOR, |
845 | | GUEST_CS_SELECTOR, |
846 | | GUEST_SS_SELECTOR, |
847 | | GUEST_DS_SELECTOR, |
848 | | GUEST_FS_SELECTOR, |
849 | | GUEST_GS_SELECTOR, |
850 | | GUEST_LDTR_SELECTOR, |
851 | | GUEST_TR_SELECTOR, |
852 | | /* 64 BITS */ |
853 | | VMCS_LINK_POINTER, |
854 | | GUEST_IA32_DEBUGCTL, |
855 | | GUEST_PAT, |
856 | | GUEST_EFER, |
857 | | GUEST_PERF_GLOBAL_CTRL, |
858 | | /* 32 BITS */ |
859 | | GUEST_ES_LIMIT, |
860 | | GUEST_CS_LIMIT, |
861 | | GUEST_SS_LIMIT, |
862 | | GUEST_DS_LIMIT, |
863 | | GUEST_FS_LIMIT, |
864 | | GUEST_GS_LIMIT, |
865 | | GUEST_LDTR_LIMIT, |
866 | | GUEST_TR_LIMIT, |
867 | | GUEST_GDTR_LIMIT, |
868 | | GUEST_IDTR_LIMIT, |
869 | | GUEST_ES_AR_BYTES, |
870 | | GUEST_CS_AR_BYTES, |
871 | | GUEST_SS_AR_BYTES, |
872 | | GUEST_DS_AR_BYTES, |
873 | | GUEST_FS_AR_BYTES, |
874 | | GUEST_GS_AR_BYTES, |
875 | | GUEST_LDTR_AR_BYTES, |
876 | | GUEST_TR_AR_BYTES, |
877 | | GUEST_INTERRUPTIBILITY_INFO, |
878 | | GUEST_ACTIVITY_STATE, |
879 | | GUEST_SYSENTER_CS, |
880 | | GUEST_PREEMPTION_TIMER, |
881 | | /* natural */ |
882 | | GUEST_ES_BASE, |
883 | | GUEST_CS_BASE, |
884 | | GUEST_SS_BASE, |
885 | | GUEST_DS_BASE, |
886 | | GUEST_FS_BASE, |
887 | | GUEST_GS_BASE, |
888 | | GUEST_LDTR_BASE, |
889 | | GUEST_TR_BASE, |
890 | | GUEST_GDTR_BASE, |
891 | | GUEST_IDTR_BASE, |
892 | | GUEST_DR7, |
893 | | /* |
894 | | * Following guest states are in local cache (cpu_user_regs) |
895 | | GUEST_RSP, |
896 | | GUEST_RIP, |
897 | | */ |
898 | | GUEST_RFLAGS, |
899 | | GUEST_PENDING_DBG_EXCEPTIONS, |
900 | | GUEST_SYSENTER_ESP, |
901 | | GUEST_SYSENTER_EIP, |
902 | | }; |
903 | | |
904 | | static const u16 gpdpte_fields[] = { |
905 | | GUEST_PDPTE(0), |
906 | | GUEST_PDPTE(1), |
907 | | GUEST_PDPTE(2), |
908 | | GUEST_PDPTE(3), |
909 | | }; |
910 | | |
911 | | /* |
912 | | * Context: shadow -> virtual VMCS |
913 | | */ |
914 | | static const u16 vmcs_ro_field[] = { |
915 | | GUEST_PHYSICAL_ADDRESS, |
916 | | VM_INSTRUCTION_ERROR, |
917 | | VM_EXIT_REASON, |
918 | | VM_EXIT_INTR_INFO, |
919 | | VM_EXIT_INTR_ERROR_CODE, |
920 | | IDT_VECTORING_INFO, |
921 | | IDT_VECTORING_ERROR_CODE, |
922 | | VM_EXIT_INSTRUCTION_LEN, |
923 | | VMX_INSTRUCTION_INFO, |
924 | | EXIT_QUALIFICATION, |
925 | | GUEST_LINEAR_ADDRESS |
926 | | }; |
927 | | |
928 | | static struct vmcs_host_to_guest { |
929 | | u16 host_field; |
930 | | u16 guest_field; |
931 | | } const vmcs_h2g_field[] = { |
932 | | {HOST_ES_SELECTOR, GUEST_ES_SELECTOR}, |
933 | | {HOST_CS_SELECTOR, GUEST_CS_SELECTOR}, |
934 | | {HOST_SS_SELECTOR, GUEST_SS_SELECTOR}, |
935 | | {HOST_DS_SELECTOR, GUEST_DS_SELECTOR}, |
936 | | {HOST_FS_SELECTOR, GUEST_FS_SELECTOR}, |
937 | | {HOST_GS_SELECTOR, GUEST_GS_SELECTOR}, |
938 | | {HOST_TR_SELECTOR, GUEST_TR_SELECTOR}, |
939 | | {HOST_SYSENTER_CS, GUEST_SYSENTER_CS}, |
940 | | {HOST_FS_BASE, GUEST_FS_BASE}, |
941 | | {HOST_GS_BASE, GUEST_GS_BASE}, |
942 | | {HOST_TR_BASE, GUEST_TR_BASE}, |
943 | | {HOST_GDTR_BASE, GUEST_GDTR_BASE}, |
944 | | {HOST_IDTR_BASE, GUEST_IDTR_BASE}, |
945 | | {HOST_SYSENTER_ESP, GUEST_SYSENTER_ESP}, |
946 | | {HOST_SYSENTER_EIP, GUEST_SYSENTER_EIP}, |
947 | | }; |
948 | | |
949 | | static void vvmcs_to_shadow(const struct vcpu *v, unsigned int field) |
950 | 0 | { |
951 | 0 | __vmwrite(field, get_vvmcs(v, field)); |
952 | 0 | } |
953 | | |
954 | | static void vvmcs_to_shadow_bulk(struct vcpu *v, unsigned int n, |
955 | | const u16 *field) |
956 | 0 | { |
957 | 0 | u64 *value = this_cpu(vvmcs_buf); |
958 | 0 | unsigned int i; |
959 | 0 |
|
960 | 0 | if ( !cpu_has_vmx_vmcs_shadowing ) |
961 | 0 | goto fallback; |
962 | 0 |
|
963 | 0 | if ( !value || n > VMCS_BUF_SIZE ) |
964 | 0 | { |
965 | 0 | gdprintk(XENLOG_DEBUG, "vmcs sync fall back to non-bulk mode, \ |
966 | 0 | buffer: %p, buffer size: %d, fields number: %d.\n", |
967 | 0 | value, VMCS_BUF_SIZE, n); |
968 | 0 | goto fallback; |
969 | 0 | } |
970 | 0 |
|
971 | 0 | virtual_vmcs_enter(v); |
972 | 0 | for ( i = 0; i < n; i++ ) |
973 | 0 | __vmread(field[i], &value[i]); |
974 | 0 | virtual_vmcs_exit(v); |
975 | 0 |
|
976 | 0 | for ( i = 0; i < n; i++ ) |
977 | 0 | __vmwrite(field[i], value[i]); |
978 | 0 |
|
979 | 0 | return; |
980 | 0 |
|
981 | 0 | fallback: |
982 | 0 | for ( i = 0; i < n; i++ ) |
983 | 0 | vvmcs_to_shadow(v, field[i]); |
984 | 0 | } |
985 | | |
986 | | static inline void shadow_to_vvmcs(const struct vcpu *v, unsigned int field) |
987 | 0 | { |
988 | 0 | unsigned long value; |
989 | 0 |
|
990 | 0 | if ( vmread_safe(field, &value) == 0 ) |
991 | 0 | set_vvmcs(v, field, value); |
992 | 0 | } |
993 | | |
994 | | static void shadow_to_vvmcs_bulk(struct vcpu *v, unsigned int n, |
995 | | const u16 *field) |
996 | 0 | { |
997 | 0 | u64 *value = this_cpu(vvmcs_buf); |
998 | 0 | unsigned int i; |
999 | 0 |
|
1000 | 0 | if ( !cpu_has_vmx_vmcs_shadowing ) |
1001 | 0 | goto fallback; |
1002 | 0 |
|
1003 | 0 | if ( !value || n > VMCS_BUF_SIZE ) |
1004 | 0 | { |
1005 | 0 | gdprintk(XENLOG_DEBUG, "vmcs sync fall back to non-bulk mode, \ |
1006 | 0 | buffer: %p, buffer size: %d, fields number: %d.\n", |
1007 | 0 | value, VMCS_BUF_SIZE, n); |
1008 | 0 | goto fallback; |
1009 | 0 | } |
1010 | 0 |
|
1011 | 0 | for ( i = 0; i < n; i++ ) |
1012 | 0 | __vmread(field[i], &value[i]); |
1013 | 0 |
|
1014 | 0 | virtual_vmcs_enter(v); |
1015 | 0 | for ( i = 0; i < n; i++ ) |
1016 | 0 | __vmwrite(field[i], value[i]); |
1017 | 0 | virtual_vmcs_exit(v); |
1018 | 0 |
|
1019 | 0 | return; |
1020 | 0 |
|
1021 | 0 | fallback: |
1022 | 0 | for ( i = 0; i < n; i++ ) |
1023 | 0 | shadow_to_vvmcs(v, field[i]); |
1024 | 0 | } |
1025 | | |
1026 | | static void load_shadow_control(struct vcpu *v) |
1027 | 0 | { |
1028 | 0 | /* |
1029 | 0 | * Set shadow controls: PIN_BASED, CPU_BASED, EXIT, ENTRY |
1030 | 0 | * and EXCEPTION |
1031 | 0 | * Enforce the removed features |
1032 | 0 | */ |
1033 | 0 | nvmx_update_pin_control(v, vmx_pin_based_exec_control); |
1034 | 0 | vmx_update_cpu_exec_control(v); |
1035 | 0 | vmx_update_secondary_exec_control(v); |
1036 | 0 | nvmx_update_exit_control(v, vmx_vmexit_control); |
1037 | 0 | nvmx_update_entry_control(v); |
1038 | 0 | vmx_update_exception_bitmap(v); |
1039 | 0 | nvmx_update_apic_access_address(v); |
1040 | 0 | nvmx_update_virtual_apic_address(v); |
1041 | 0 | nvmx_update_tpr_threshold(v); |
1042 | 0 | nvmx_update_pfec(v); |
1043 | 0 | } |
1044 | | |
1045 | | static void load_shadow_guest_state(struct vcpu *v) |
1046 | 0 | { |
1047 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1048 | 0 | u32 control; |
1049 | 0 | u64 cr_gh_mask, cr_read_shadow; |
1050 | 0 | int rc; |
1051 | 0 |
|
1052 | 0 | static const u16 vmentry_fields[] = { |
1053 | 0 | VM_ENTRY_INTR_INFO, |
1054 | 0 | VM_ENTRY_EXCEPTION_ERROR_CODE, |
1055 | 0 | VM_ENTRY_INSTRUCTION_LEN, |
1056 | 0 | }; |
1057 | 0 |
|
1058 | 0 | /* vvmcs.gstate to shadow vmcs.gstate */ |
1059 | 0 | vvmcs_to_shadow_bulk(v, ARRAY_SIZE(vmcs_gstate_field), |
1060 | 0 | vmcs_gstate_field); |
1061 | 0 |
|
1062 | 0 | nvcpu->guest_cr[0] = get_vvmcs(v, CR0_READ_SHADOW); |
1063 | 0 | nvcpu->guest_cr[4] = get_vvmcs(v, CR4_READ_SHADOW); |
1064 | 0 |
|
1065 | 0 | rc = hvm_set_cr0(get_vvmcs(v, GUEST_CR0), 1); |
1066 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1067 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1068 | 0 |
|
1069 | 0 | rc = hvm_set_cr4(get_vvmcs(v, GUEST_CR4), 1); |
1070 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1071 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1072 | 0 |
|
1073 | 0 | rc = hvm_set_cr3(get_vvmcs(v, GUEST_CR3), 1); |
1074 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1075 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1076 | 0 |
|
1077 | 0 | control = get_vvmcs(v, VM_ENTRY_CONTROLS); |
1078 | 0 | if ( control & VM_ENTRY_LOAD_GUEST_PAT ) |
1079 | 0 | hvm_set_guest_pat(v, get_vvmcs(v, GUEST_PAT)); |
1080 | 0 | if ( control & VM_ENTRY_LOAD_PERF_GLOBAL_CTRL ) |
1081 | 0 | { |
1082 | 0 | rc = hvm_msr_write_intercept(MSR_CORE_PERF_GLOBAL_CTRL, |
1083 | 0 | get_vvmcs(v, GUEST_PERF_GLOBAL_CTRL), 0); |
1084 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1085 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1086 | 0 | } |
1087 | 0 |
|
1088 | 0 | hvm_funcs.set_tsc_offset(v, v->arch.hvm_vcpu.cache_tsc_offset, 0); |
1089 | 0 |
|
1090 | 0 | vvmcs_to_shadow_bulk(v, ARRAY_SIZE(vmentry_fields), vmentry_fields); |
1091 | 0 |
|
1092 | 0 | /* |
1093 | 0 | * While emulate CR0 and CR4 for nested virtualization, set the CR0/CR4 |
1094 | 0 | * guest host mask to 0xffffffff in shadow VMCS (follow the host L1 VMCS), |
1095 | 0 | * then calculate the corresponding read shadow separately for CR0 and CR4. |
1096 | 0 | */ |
1097 | 0 | cr_gh_mask = get_vvmcs(v, CR0_GUEST_HOST_MASK); |
1098 | 0 | cr_read_shadow = (get_vvmcs(v, GUEST_CR0) & ~cr_gh_mask) | |
1099 | 0 | (get_vvmcs(v, CR0_READ_SHADOW) & cr_gh_mask); |
1100 | 0 | __vmwrite(CR0_READ_SHADOW, cr_read_shadow); |
1101 | 0 |
|
1102 | 0 | cr_gh_mask = get_vvmcs(v, CR4_GUEST_HOST_MASK); |
1103 | 0 | cr_read_shadow = (get_vvmcs(v, GUEST_CR4) & ~cr_gh_mask) | |
1104 | 0 | (get_vvmcs(v, CR4_READ_SHADOW) & cr_gh_mask); |
1105 | 0 | __vmwrite(CR4_READ_SHADOW, cr_read_shadow); |
1106 | 0 |
|
1107 | 0 | /* TODO: CR3 target control */ |
1108 | 0 | } |
1109 | | |
1110 | | uint64_t get_shadow_eptp(struct vcpu *v) |
1111 | 0 | { |
1112 | 0 | struct p2m_domain *p2m = p2m_get_nestedp2m(v); |
1113 | 0 | struct ept_data *ept = &p2m->ept; |
1114 | 0 |
|
1115 | 0 | ept->mfn = pagetable_get_pfn(p2m_get_pagetable(p2m)); |
1116 | 0 | return ept->eptp; |
1117 | 0 | } |
1118 | | |
1119 | | static uint64_t get_host_eptp(struct vcpu *v) |
1120 | 0 | { |
1121 | 0 | return p2m_get_hostp2m(v->domain)->ept.eptp; |
1122 | 0 | } |
1123 | | |
1124 | | static bool_t nvmx_vpid_enabled(const struct vcpu *v) |
1125 | 0 | { |
1126 | 0 | uint32_t second_cntl; |
1127 | 0 |
|
1128 | 0 | second_cntl = get_vvmcs(v, SECONDARY_VM_EXEC_CONTROL); |
1129 | 0 | if ( second_cntl & SECONDARY_EXEC_ENABLE_VPID ) |
1130 | 0 | return 1; |
1131 | 0 | return 0; |
1132 | 0 | } |
1133 | | |
1134 | | static void nvmx_set_vmcs_pointer(struct vcpu *v, struct vmcs_struct *vvmcs) |
1135 | 0 | { |
1136 | 0 | paddr_t vvmcs_maddr = v->arch.hvm_vmx.vmcs_shadow_maddr; |
1137 | 0 |
|
1138 | 0 | __vmpclear(vvmcs_maddr); |
1139 | 0 | vvmcs->vmcs_revision_id |= VMCS_RID_TYPE_MASK; |
1140 | 0 | __vmwrite(VMCS_LINK_POINTER, vvmcs_maddr); |
1141 | 0 | __vmwrite(VMREAD_BITMAP, page_to_maddr(v->arch.hvm_vmx.vmread_bitmap)); |
1142 | 0 | __vmwrite(VMWRITE_BITMAP, page_to_maddr(v->arch.hvm_vmx.vmwrite_bitmap)); |
1143 | 0 | } |
1144 | | |
1145 | | static void nvmx_clear_vmcs_pointer(struct vcpu *v, struct vmcs_struct *vvmcs) |
1146 | 0 | { |
1147 | 0 | paddr_t vvmcs_maddr = v->arch.hvm_vmx.vmcs_shadow_maddr; |
1148 | 0 |
|
1149 | 0 | __vmpclear(vvmcs_maddr); |
1150 | 0 | vvmcs->vmcs_revision_id &= ~VMCS_RID_TYPE_MASK; |
1151 | 0 | __vmwrite(VMCS_LINK_POINTER, ~0ul); |
1152 | 0 | __vmwrite(VMREAD_BITMAP, 0); |
1153 | 0 | __vmwrite(VMWRITE_BITMAP, 0); |
1154 | 0 | } |
1155 | | |
1156 | | static void virtual_vmentry(struct cpu_user_regs *regs) |
1157 | 0 | { |
1158 | 0 | struct vcpu *v = current; |
1159 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1160 | 0 | unsigned long lm_l1, lm_l2; |
1161 | 0 |
|
1162 | 0 | vmx_vmcs_switch(v->arch.hvm_vmx.vmcs_pa, nvcpu->nv_n2vmcx_pa); |
1163 | 0 |
|
1164 | 0 | nestedhvm_vcpu_enter_guestmode(v); |
1165 | 0 | nvcpu->nv_vmentry_pending = 0; |
1166 | 0 | nvcpu->nv_vmswitch_in_progress = 1; |
1167 | 0 |
|
1168 | 0 | /* |
1169 | 0 | * EFER handling: |
1170 | 0 | * hvm_set_efer won't work if CR0.PG = 1, so we change the value |
1171 | 0 | * directly to make hvm_long_mode_active(v) work in L2. |
1172 | 0 | * An additional update_paging_modes is also needed if |
1173 | 0 | * there is 32/64 switch. v->arch.hvm_vcpu.guest_efer doesn't |
1174 | 0 | * need to be saved, since its value on vmexit is determined by |
1175 | 0 | * L1 exit_controls |
1176 | 0 | */ |
1177 | 0 | lm_l1 = hvm_long_mode_active(v); |
1178 | 0 | lm_l2 = !!(get_vvmcs(v, VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE); |
1179 | 0 |
|
1180 | 0 | if ( lm_l2 ) |
1181 | 0 | v->arch.hvm_vcpu.guest_efer |= EFER_LMA | EFER_LME; |
1182 | 0 | else |
1183 | 0 | v->arch.hvm_vcpu.guest_efer &= ~(EFER_LMA | EFER_LME); |
1184 | 0 |
|
1185 | 0 | load_shadow_control(v); |
1186 | 0 | load_shadow_guest_state(v); |
1187 | 0 |
|
1188 | 0 | if ( lm_l1 != lm_l2 ) |
1189 | 0 | paging_update_paging_modes(v); |
1190 | 0 |
|
1191 | 0 | if ( nvmx_ept_enabled(v) && hvm_pae_enabled(v) && |
1192 | 0 | !(v->arch.hvm_vcpu.guest_efer & EFER_LMA) ) |
1193 | 0 | vvmcs_to_shadow_bulk(v, ARRAY_SIZE(gpdpte_fields), gpdpte_fields); |
1194 | 0 |
|
1195 | 0 | regs->rip = get_vvmcs(v, GUEST_RIP); |
1196 | 0 | regs->rsp = get_vvmcs(v, GUEST_RSP); |
1197 | 0 | regs->rflags = get_vvmcs(v, GUEST_RFLAGS); |
1198 | 0 |
|
1199 | 0 | /* updating host cr0 to sync TS bit */ |
1200 | 0 | __vmwrite(HOST_CR0, v->arch.hvm_vmx.host_cr0); |
1201 | 0 |
|
1202 | 0 | /* Setup virtual ETP for L2 guest*/ |
1203 | 0 | if ( nestedhvm_paging_mode_hap(v) ) |
1204 | 0 | /* This will setup the initial np2m for the nested vCPU */ |
1205 | 0 | __vmwrite(EPT_POINTER, get_shadow_eptp(v)); |
1206 | 0 | else |
1207 | 0 | __vmwrite(EPT_POINTER, get_host_eptp(v)); |
1208 | 0 |
|
1209 | 0 | /* nested VPID support! */ |
1210 | 0 | if ( cpu_has_vmx_vpid && nvmx_vpid_enabled(v) ) |
1211 | 0 | { |
1212 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1213 | 0 | uint32_t new_vpid = get_vvmcs(v, VIRTUAL_PROCESSOR_ID); |
1214 | 0 |
|
1215 | 0 | if ( nvmx->guest_vpid != new_vpid ) |
1216 | 0 | { |
1217 | 0 | hvm_asid_flush_vcpu_asid(&vcpu_nestedhvm(v).nv_n2asid); |
1218 | 0 | nvmx->guest_vpid = new_vpid; |
1219 | 0 | } |
1220 | 0 | } |
1221 | 0 |
|
1222 | 0 | } |
1223 | | |
1224 | | static void sync_vvmcs_guest_state(struct vcpu *v, struct cpu_user_regs *regs) |
1225 | 0 | { |
1226 | 0 | /* copy shadow vmcs.gstate back to vvmcs.gstate */ |
1227 | 0 | shadow_to_vvmcs_bulk(v, ARRAY_SIZE(vmcs_gstate_field), |
1228 | 0 | vmcs_gstate_field); |
1229 | 0 | /* RIP, RSP are in user regs */ |
1230 | 0 | set_vvmcs(v, GUEST_RIP, regs->rip); |
1231 | 0 | set_vvmcs(v, GUEST_RSP, regs->rsp); |
1232 | 0 |
|
1233 | 0 | /* CR3 sync if exec doesn't want cr3 load exiting: i.e. nested EPT */ |
1234 | 0 | if ( !(__n2_exec_control(v) & CPU_BASED_CR3_LOAD_EXITING) ) |
1235 | 0 | shadow_to_vvmcs(v, GUEST_CR3); |
1236 | 0 | } |
1237 | | |
1238 | | static void sync_vvmcs_ro(struct vcpu *v) |
1239 | 0 | { |
1240 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1241 | 0 |
|
1242 | 0 | shadow_to_vvmcs_bulk(v, ARRAY_SIZE(vmcs_ro_field), vmcs_ro_field); |
1243 | 0 |
|
1244 | 0 | /* Adjust exit_reason/exit_qualifciation for violation case */ |
1245 | 0 | if ( get_vvmcs(v, VM_EXIT_REASON) == EXIT_REASON_EPT_VIOLATION ) |
1246 | 0 | { |
1247 | 0 | set_vvmcs(v, EXIT_QUALIFICATION, nvmx->ept.exit_qual); |
1248 | 0 | set_vvmcs(v, VM_EXIT_REASON, nvmx->ept.exit_reason); |
1249 | 0 | } |
1250 | 0 | } |
1251 | | |
1252 | | static void load_vvmcs_host_state(struct vcpu *v) |
1253 | 0 | { |
1254 | 0 | int i, rc; |
1255 | 0 | u64 r; |
1256 | 0 | u32 control; |
1257 | 0 |
|
1258 | 0 | for ( i = 0; i < ARRAY_SIZE(vmcs_h2g_field); i++ ) |
1259 | 0 | { |
1260 | 0 | r = get_vvmcs(v, vmcs_h2g_field[i].host_field); |
1261 | 0 | __vmwrite(vmcs_h2g_field[i].guest_field, r); |
1262 | 0 | } |
1263 | 0 |
|
1264 | 0 | rc = hvm_set_cr0(get_vvmcs(v, HOST_CR0), 1); |
1265 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1266 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1267 | 0 |
|
1268 | 0 | rc = hvm_set_cr4(get_vvmcs(v, HOST_CR4), 1); |
1269 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1270 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1271 | 0 |
|
1272 | 0 | rc = hvm_set_cr3(get_vvmcs(v, HOST_CR3), 1); |
1273 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1274 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1275 | 0 |
|
1276 | 0 | control = get_vvmcs(v, VM_EXIT_CONTROLS); |
1277 | 0 | if ( control & VM_EXIT_LOAD_HOST_PAT ) |
1278 | 0 | hvm_set_guest_pat(v, get_vvmcs(v, HOST_PAT)); |
1279 | 0 | if ( control & VM_EXIT_LOAD_PERF_GLOBAL_CTRL ) |
1280 | 0 | { |
1281 | 0 | rc = hvm_msr_write_intercept(MSR_CORE_PERF_GLOBAL_CTRL, |
1282 | 0 | get_vvmcs(v, HOST_PERF_GLOBAL_CTRL), 1); |
1283 | 0 | if ( rc == X86EMUL_EXCEPTION ) |
1284 | 0 | hvm_inject_hw_exception(TRAP_gp_fault, 0); |
1285 | 0 | } |
1286 | 0 |
|
1287 | 0 | hvm_funcs.set_tsc_offset(v, v->arch.hvm_vcpu.cache_tsc_offset, 0); |
1288 | 0 |
|
1289 | 0 | set_vvmcs(v, VM_ENTRY_INTR_INFO, 0); |
1290 | 0 | } |
1291 | | |
1292 | | static void sync_exception_state(struct vcpu *v) |
1293 | 0 | { |
1294 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1295 | 0 |
|
1296 | 0 | if ( !(nvmx->intr.intr_info & INTR_INFO_VALID_MASK) ) |
1297 | 0 | return; |
1298 | 0 |
|
1299 | 0 | switch ( MASK_EXTR(nvmx->intr.intr_info, INTR_INFO_INTR_TYPE_MASK) ) |
1300 | 0 | { |
1301 | 0 | case X86_EVENTTYPE_EXT_INTR: |
1302 | 0 | /* rename exit_reason to EXTERNAL_INTERRUPT */ |
1303 | 0 | set_vvmcs(v, VM_EXIT_REASON, EXIT_REASON_EXTERNAL_INTERRUPT); |
1304 | 0 | set_vvmcs(v, EXIT_QUALIFICATION, 0); |
1305 | 0 | set_vvmcs(v, VM_EXIT_INTR_INFO, |
1306 | 0 | nvmx->intr.intr_info); |
1307 | 0 | break; |
1308 | 0 |
|
1309 | 0 | case X86_EVENTTYPE_HW_EXCEPTION: |
1310 | 0 | case X86_EVENTTYPE_SW_INTERRUPT: |
1311 | 0 | case X86_EVENTTYPE_SW_EXCEPTION: |
1312 | 0 | /* throw to L1 */ |
1313 | 0 | set_vvmcs(v, VM_EXIT_INTR_INFO, nvmx->intr.intr_info); |
1314 | 0 | set_vvmcs(v, VM_EXIT_INTR_ERROR_CODE, nvmx->intr.error_code); |
1315 | 0 | break; |
1316 | 0 | case X86_EVENTTYPE_NMI: |
1317 | 0 | set_vvmcs(v, VM_EXIT_REASON, EXIT_REASON_EXCEPTION_NMI); |
1318 | 0 | set_vvmcs(v, EXIT_QUALIFICATION, 0); |
1319 | 0 | set_vvmcs(v, VM_EXIT_INTR_INFO, nvmx->intr.intr_info); |
1320 | 0 | break; |
1321 | 0 | default: |
1322 | 0 | gdprintk(XENLOG_ERR, "Exception state %lx not handled\n", |
1323 | 0 | nvmx->intr.intr_info); |
1324 | 0 | break; |
1325 | 0 | } |
1326 | 0 | } |
1327 | | |
1328 | | static void nvmx_update_apicv(struct vcpu *v) |
1329 | 0 | { |
1330 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1331 | 0 | unsigned long reason = get_vvmcs(v, VM_EXIT_REASON); |
1332 | 0 | uint32_t intr_info = get_vvmcs(v, VM_EXIT_INTR_INFO); |
1333 | 0 |
|
1334 | 0 | if ( reason == EXIT_REASON_EXTERNAL_INTERRUPT && |
1335 | 0 | nvmx->intr.source == hvm_intsrc_lapic && |
1336 | 0 | (intr_info & INTR_INFO_VALID_MASK) ) |
1337 | 0 | { |
1338 | 0 | uint16_t status; |
1339 | 0 | uint32_t rvi, ppr; |
1340 | 0 | uint32_t vector = intr_info & 0xff; |
1341 | 0 | struct vlapic *vlapic = vcpu_vlapic(v); |
1342 | 0 |
|
1343 | 0 | vlapic_ack_pending_irq(v, vector, 1); |
1344 | 0 |
|
1345 | 0 | ppr = vlapic_set_ppr(vlapic); |
1346 | 0 | WARN_ON((ppr & 0xf0) != (vector & 0xf0)); |
1347 | 0 |
|
1348 | 0 | status = vector << VMX_GUEST_INTR_STATUS_SVI_OFFSET; |
1349 | 0 | rvi = vlapic_has_pending_irq(v); |
1350 | 0 | if ( rvi != -1 ) |
1351 | 0 | status |= rvi & VMX_GUEST_INTR_STATUS_SUBFIELD_BITMASK; |
1352 | 0 |
|
1353 | 0 | __vmwrite(GUEST_INTR_STATUS, status); |
1354 | 0 | } |
1355 | 0 | } |
1356 | | |
1357 | | static void virtual_vmexit(struct cpu_user_regs *regs) |
1358 | 0 | { |
1359 | 0 | struct vcpu *v = current; |
1360 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1361 | 0 | unsigned long lm_l1, lm_l2; |
1362 | 0 |
|
1363 | 0 | sync_vvmcs_ro(v); |
1364 | 0 | sync_vvmcs_guest_state(v, regs); |
1365 | 0 | sync_exception_state(v); |
1366 | 0 |
|
1367 | 0 | if ( nvmx_ept_enabled(v) && hvm_pae_enabled(v) && |
1368 | 0 | !(v->arch.hvm_vcpu.guest_efer & EFER_LMA) ) |
1369 | 0 | shadow_to_vvmcs_bulk(v, ARRAY_SIZE(gpdpte_fields), gpdpte_fields); |
1370 | 0 |
|
1371 | 0 | /* This will clear current pCPU bit in p2m->dirty_cpumask */ |
1372 | 0 | np2m_schedule(NP2M_SCHEDLE_OUT); |
1373 | 0 |
|
1374 | 0 | vmx_vmcs_switch(v->arch.hvm_vmx.vmcs_pa, nvcpu->nv_n1vmcx_pa); |
1375 | 0 |
|
1376 | 0 | nestedhvm_vcpu_exit_guestmode(v); |
1377 | 0 | nvcpu->nv_vmexit_pending = 0; |
1378 | 0 | nvcpu->nv_vmswitch_in_progress = 1; |
1379 | 0 |
|
1380 | 0 | lm_l2 = hvm_long_mode_active(v); |
1381 | 0 | lm_l1 = !!(get_vvmcs(v, VM_EXIT_CONTROLS) & VM_EXIT_IA32E_MODE); |
1382 | 0 |
|
1383 | 0 | if ( lm_l1 ) |
1384 | 0 | v->arch.hvm_vcpu.guest_efer |= EFER_LMA | EFER_LME; |
1385 | 0 | else |
1386 | 0 | v->arch.hvm_vcpu.guest_efer &= ~(EFER_LMA | EFER_LME); |
1387 | 0 |
|
1388 | 0 | vmx_update_cpu_exec_control(v); |
1389 | 0 | vmx_update_secondary_exec_control(v); |
1390 | 0 | vmx_update_exception_bitmap(v); |
1391 | 0 |
|
1392 | 0 | load_vvmcs_host_state(v); |
1393 | 0 |
|
1394 | 0 | if ( lm_l1 != lm_l2 ) |
1395 | 0 | paging_update_paging_modes(v); |
1396 | 0 |
|
1397 | 0 | regs->rip = get_vvmcs(v, HOST_RIP); |
1398 | 0 | regs->rsp = get_vvmcs(v, HOST_RSP); |
1399 | 0 | /* VM exit clears all bits except bit 1 */ |
1400 | 0 | regs->rflags = X86_EFLAGS_MBS; |
1401 | 0 |
|
1402 | 0 | /* updating host cr0 to sync TS bit */ |
1403 | 0 | __vmwrite(HOST_CR0, v->arch.hvm_vmx.host_cr0); |
1404 | 0 |
|
1405 | 0 | if ( cpu_has_vmx_virtual_intr_delivery ) |
1406 | 0 | nvmx_update_apicv(v); |
1407 | 0 |
|
1408 | 0 | nvcpu->nv_vmswitch_in_progress = 0; |
1409 | 0 | vmsucceed(regs); |
1410 | 0 | } |
1411 | | |
1412 | | static void nvmx_eptp_update(void) |
1413 | 9.93M | { |
1414 | 9.93M | struct vcpu *curr = current; |
1415 | 9.93M | |
1416 | 9.93M | if ( !nestedhvm_vcpu_in_guestmode(curr) || |
1417 | 0 | vcpu_nestedhvm(curr).nv_vmexit_pending || |
1418 | 0 | !vcpu_nestedhvm(curr).stale_np2m || |
1419 | 0 | !nestedhvm_paging_mode_hap(curr) ) |
1420 | 9.78M | return; |
1421 | 9.93M | |
1422 | 9.93M | /* |
1423 | 9.93M | * Interrupts are enabled here, so we need to clear stale_np2m |
1424 | 9.93M | * before we do the vmwrite. If we do it in the other order, an |
1425 | 9.93M | * and IPI comes in changing the shadow eptp after the vmwrite, |
1426 | 9.93M | * we'll complete the vmenter with a stale eptp value. |
1427 | 9.93M | */ |
1428 | 150k | vcpu_nestedhvm(curr).stale_np2m = false; |
1429 | 150k | __vmwrite(EPT_POINTER, get_shadow_eptp(curr)); |
1430 | 150k | } |
1431 | | |
1432 | | void nvmx_switch_guest(void) |
1433 | 9.97M | { |
1434 | 9.97M | struct vcpu *v = current; |
1435 | 9.97M | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1436 | 9.97M | struct cpu_user_regs *regs = guest_cpu_user_regs(); |
1437 | 9.97M | |
1438 | 9.97M | nvmx_eptp_update(); |
1439 | 9.97M | |
1440 | 9.97M | /* |
1441 | 9.97M | * A pending IO emulation may still be not finished. In this case, no |
1442 | 9.97M | * virtual vmswitch is allowed. Or else, the following IO emulation will |
1443 | 9.97M | * be handled in a wrong VCPU context. If there are no IO backends - PVH |
1444 | 9.97M | * guest by itself or a PVH guest with an HVM guest running inside - we |
1445 | 9.97M | * don't want to continue as this setup is not implemented nor supported |
1446 | 9.97M | * as of right now. |
1447 | 9.97M | */ |
1448 | 9.97M | if ( hvm_io_pending(v) ) |
1449 | 391 | return; |
1450 | 9.97M | /* |
1451 | 9.97M | * a softirq may interrupt us between a virtual vmentry is |
1452 | 9.97M | * just handled and the true vmentry. If during this window, |
1453 | 9.97M | * a L1 virtual interrupt causes another virtual vmexit, we |
1454 | 9.97M | * cannot let that happen or VM_ENTRY_INTR_INFO will be lost. |
1455 | 9.97M | */ |
1456 | 9.97M | if ( unlikely(nvcpu->nv_vmswitch_in_progress) ) |
1457 | 0 | return; |
1458 | 9.97M | |
1459 | 9.97M | if ( nestedhvm_vcpu_in_guestmode(v) && nvcpu->nv_vmexit_pending ) |
1460 | 0 | virtual_vmexit(regs); |
1461 | 9.97M | else if ( !nestedhvm_vcpu_in_guestmode(v) && nvcpu->nv_vmentry_pending ) |
1462 | 0 | virtual_vmentry(regs); |
1463 | 9.97M | } |
1464 | | |
1465 | | /* |
1466 | | * VMX instructions handling |
1467 | | */ |
1468 | | |
1469 | | int nvmx_handle_vmxon(struct cpu_user_regs *regs) |
1470 | 0 | { |
1471 | 0 | struct vcpu *v=current; |
1472 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1473 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1474 | 0 | struct vmx_inst_decoded decode; |
1475 | 0 | unsigned long gpa = 0; |
1476 | 0 | uint32_t nvmcs_revid; |
1477 | 0 | int rc; |
1478 | 0 |
|
1479 | 0 | rc = decode_vmx_inst(regs, &decode, &gpa, 1); |
1480 | 0 | if ( rc != X86EMUL_OKAY ) |
1481 | 0 | return rc; |
1482 | 0 |
|
1483 | 0 | if ( nvmx_vcpu_in_vmx(v) ) |
1484 | 0 | { |
1485 | 0 | vmfail(regs, VMX_INSN_VMXON_IN_VMX_ROOT); |
1486 | 0 | return X86EMUL_OKAY; |
1487 | 0 | } |
1488 | 0 |
|
1489 | 0 | if ( (gpa & ~PAGE_MASK) || !gfn_valid(v->domain, _gfn(gpa >> PAGE_SHIFT)) ) |
1490 | 0 | { |
1491 | 0 | vmfail_invalid(regs); |
1492 | 0 | return X86EMUL_OKAY; |
1493 | 0 | } |
1494 | 0 |
|
1495 | 0 | rc = hvm_copy_from_guest_phys(&nvmcs_revid, gpa, sizeof(nvmcs_revid)); |
1496 | 0 | if ( rc != HVMTRANS_okay || |
1497 | 0 | (nvmcs_revid & ~VMX_BASIC_REVISION_MASK) || |
1498 | 0 | ((nvmcs_revid ^ vmx_basic_msr) & VMX_BASIC_REVISION_MASK) ) |
1499 | 0 | { |
1500 | 0 | vmfail_invalid(regs); |
1501 | 0 | return X86EMUL_OKAY; |
1502 | 0 | } |
1503 | 0 |
|
1504 | 0 | nvmx->vmxon_region_pa = gpa; |
1505 | 0 |
|
1506 | 0 | /* |
1507 | 0 | * `fork' the host vmcs to shadow_vmcs |
1508 | 0 | * vmcs_lock is not needed since we are on current |
1509 | 0 | */ |
1510 | 0 | nvcpu->nv_n1vmcx_pa = v->arch.hvm_vmx.vmcs_pa; |
1511 | 0 | __vmpclear(v->arch.hvm_vmx.vmcs_pa); |
1512 | 0 | copy_domain_page(_mfn(PFN_DOWN(nvcpu->nv_n2vmcx_pa)), |
1513 | 0 | _mfn(PFN_DOWN(v->arch.hvm_vmx.vmcs_pa))); |
1514 | 0 | __vmptrld(v->arch.hvm_vmx.vmcs_pa); |
1515 | 0 | v->arch.hvm_vmx.launched = 0; |
1516 | 0 | vmsucceed(regs); |
1517 | 0 |
|
1518 | 0 | return X86EMUL_OKAY; |
1519 | 0 | } |
1520 | | |
1521 | | int nvmx_handle_vmxoff(struct cpu_user_regs *regs) |
1522 | 0 | { |
1523 | 0 | struct vcpu *v=current; |
1524 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1525 | 0 | int rc; |
1526 | 0 |
|
1527 | 0 | rc = vmx_inst_check_privilege(regs, 0); |
1528 | 0 | if ( rc != X86EMUL_OKAY ) |
1529 | 0 | return rc; |
1530 | 0 |
|
1531 | 0 | nvmx_purge_vvmcs(v); |
1532 | 0 | nvmx->vmxon_region_pa = INVALID_PADDR; |
1533 | 0 |
|
1534 | 0 | vmsucceed(regs); |
1535 | 0 | return X86EMUL_OKAY; |
1536 | 0 | } |
1537 | | |
1538 | | static bool_t vvmcs_launched(struct list_head *launched_list, |
1539 | | unsigned long vvmcs_mfn) |
1540 | 0 | { |
1541 | 0 | struct vvmcs_list *vvmcs; |
1542 | 0 | struct list_head *pos; |
1543 | 0 | bool_t launched = 0; |
1544 | 0 |
|
1545 | 0 | list_for_each(pos, launched_list) |
1546 | 0 | { |
1547 | 0 | vvmcs = list_entry(pos, struct vvmcs_list, node); |
1548 | 0 | if ( vvmcs_mfn == vvmcs->vvmcs_mfn ) |
1549 | 0 | { |
1550 | 0 | launched = 1; |
1551 | 0 | break; |
1552 | 0 | } |
1553 | 0 | } |
1554 | 0 |
|
1555 | 0 | return launched; |
1556 | 0 | } |
1557 | | |
1558 | | static int set_vvmcs_launched(struct list_head *launched_list, |
1559 | | unsigned long vvmcs_mfn) |
1560 | 0 | { |
1561 | 0 | struct vvmcs_list *vvmcs; |
1562 | 0 |
|
1563 | 0 | if ( vvmcs_launched(launched_list, vvmcs_mfn) ) |
1564 | 0 | return 0; |
1565 | 0 |
|
1566 | 0 | vvmcs = xzalloc(struct vvmcs_list); |
1567 | 0 | if ( !vvmcs ) |
1568 | 0 | return -ENOMEM; |
1569 | 0 |
|
1570 | 0 | vvmcs->vvmcs_mfn = vvmcs_mfn; |
1571 | 0 | list_add(&vvmcs->node, launched_list); |
1572 | 0 |
|
1573 | 0 | return 0; |
1574 | 0 | } |
1575 | | |
1576 | | static void clear_vvmcs_launched(struct list_head *launched_list, |
1577 | | paddr_t vvmcs_mfn) |
1578 | 0 | { |
1579 | 0 | struct vvmcs_list *vvmcs; |
1580 | 0 | struct list_head *pos; |
1581 | 0 |
|
1582 | 0 | list_for_each(pos, launched_list) |
1583 | 0 | { |
1584 | 0 | vvmcs = list_entry(pos, struct vvmcs_list, node); |
1585 | 0 | if ( vvmcs_mfn == vvmcs->vvmcs_mfn ) |
1586 | 0 | { |
1587 | 0 | list_del(&vvmcs->node); |
1588 | 0 | xfree(vvmcs); |
1589 | 0 | break; |
1590 | 0 | } |
1591 | 0 | } |
1592 | 0 | } |
1593 | | |
1594 | | static int nvmx_vmresume(struct vcpu *v, struct cpu_user_regs *regs) |
1595 | 0 | { |
1596 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1597 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1598 | 0 |
|
1599 | 0 | /* check VMCS is valid and IO BITMAP is set */ |
1600 | 0 | if ( (nvcpu->nv_vvmcxaddr != INVALID_PADDR) && |
1601 | 0 | ((nvmx->iobitmap[0] && nvmx->iobitmap[1]) || |
1602 | 0 | !(__n2_exec_control(v) & CPU_BASED_ACTIVATE_IO_BITMAP) ) ) |
1603 | 0 | nvcpu->nv_vmentry_pending = 1; |
1604 | 0 | else |
1605 | 0 | vmfail_invalid(regs); |
1606 | 0 |
|
1607 | 0 | return X86EMUL_OKAY; |
1608 | 0 | } |
1609 | | |
1610 | | int nvmx_handle_vmresume(struct cpu_user_regs *regs) |
1611 | 0 | { |
1612 | 0 | bool_t launched; |
1613 | 0 | struct vcpu *v = current; |
1614 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1615 | 0 | unsigned long intr_shadow; |
1616 | 0 | int rc = vmx_inst_check_privilege(regs, 0); |
1617 | 0 |
|
1618 | 0 | if ( rc != X86EMUL_OKAY ) |
1619 | 0 | return rc; |
1620 | 0 |
|
1621 | 0 | if ( vcpu_nestedhvm(v).nv_vvmcxaddr == INVALID_PADDR ) |
1622 | 0 | { |
1623 | 0 | vmfail_invalid(regs); |
1624 | 0 | return X86EMUL_OKAY; |
1625 | 0 | } |
1626 | 0 |
|
1627 | 0 | __vmread(GUEST_INTERRUPTIBILITY_INFO, &intr_shadow); |
1628 | 0 | if ( intr_shadow & VMX_INTR_SHADOW_MOV_SS ) |
1629 | 0 | { |
1630 | 0 | vmfail_valid(regs, VMX_INSN_VMENTRY_BLOCKED_BY_MOV_SS); |
1631 | 0 | return X86EMUL_OKAY; |
1632 | 0 | } |
1633 | 0 |
|
1634 | 0 | launched = vvmcs_launched(&nvmx->launched_list, |
1635 | 0 | PFN_DOWN(v->arch.hvm_vmx.vmcs_shadow_maddr)); |
1636 | 0 | if ( !launched ) |
1637 | 0 | { |
1638 | 0 | vmfail_valid(regs, VMX_INSN_VMRESUME_NONLAUNCHED_VMCS); |
1639 | 0 | return X86EMUL_OKAY; |
1640 | 0 | } |
1641 | 0 | return nvmx_vmresume(v,regs); |
1642 | 0 | } |
1643 | | |
1644 | | int nvmx_handle_vmlaunch(struct cpu_user_regs *regs) |
1645 | 0 | { |
1646 | 0 | bool_t launched; |
1647 | 0 | struct vcpu *v = current; |
1648 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1649 | 0 | unsigned long intr_shadow; |
1650 | 0 | int rc = vmx_inst_check_privilege(regs, 0); |
1651 | 0 |
|
1652 | 0 | if ( rc != X86EMUL_OKAY ) |
1653 | 0 | return rc; |
1654 | 0 |
|
1655 | 0 | if ( vcpu_nestedhvm(v).nv_vvmcxaddr == INVALID_PADDR ) |
1656 | 0 | { |
1657 | 0 | vmfail_invalid(regs); |
1658 | 0 | return X86EMUL_OKAY; |
1659 | 0 | } |
1660 | 0 |
|
1661 | 0 | __vmread(GUEST_INTERRUPTIBILITY_INFO, &intr_shadow); |
1662 | 0 | if ( intr_shadow & VMX_INTR_SHADOW_MOV_SS ) |
1663 | 0 | { |
1664 | 0 | vmfail_valid(regs, VMX_INSN_VMENTRY_BLOCKED_BY_MOV_SS); |
1665 | 0 | return X86EMUL_OKAY; |
1666 | 0 | } |
1667 | 0 |
|
1668 | 0 | launched = vvmcs_launched(&nvmx->launched_list, |
1669 | 0 | PFN_DOWN(v->arch.hvm_vmx.vmcs_shadow_maddr)); |
1670 | 0 | if ( launched ) |
1671 | 0 | { |
1672 | 0 | vmfail_valid(regs, VMX_INSN_VMLAUNCH_NONCLEAR_VMCS); |
1673 | 0 | return X86EMUL_OKAY; |
1674 | 0 | } |
1675 | 0 | else { |
1676 | 0 | rc = nvmx_vmresume(v,regs); |
1677 | 0 | if ( rc == X86EMUL_OKAY ) |
1678 | 0 | { |
1679 | 0 | if ( set_vvmcs_launched(&nvmx->launched_list, |
1680 | 0 | PFN_DOWN(v->arch.hvm_vmx.vmcs_shadow_maddr)) < 0 ) |
1681 | 0 | return X86EMUL_UNHANDLEABLE; |
1682 | 0 | } |
1683 | 0 | } |
1684 | 0 | return rc; |
1685 | 0 | } |
1686 | | |
1687 | | int nvmx_handle_vmptrld(struct cpu_user_regs *regs) |
1688 | 0 | { |
1689 | 0 | struct vcpu *v = current; |
1690 | 0 | struct vmx_inst_decoded decode; |
1691 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1692 | 0 | unsigned long gpa = 0; |
1693 | 0 | int rc; |
1694 | 0 |
|
1695 | 0 | rc = decode_vmx_inst(regs, &decode, &gpa, 0); |
1696 | 0 | if ( rc != X86EMUL_OKAY ) |
1697 | 0 | return rc; |
1698 | 0 |
|
1699 | 0 | if ( gpa == vcpu_2_nvmx(v).vmxon_region_pa || gpa & 0xfff ) |
1700 | 0 | { |
1701 | 0 | vmfail_invalid(regs); |
1702 | 0 | goto out; |
1703 | 0 | } |
1704 | 0 |
|
1705 | 0 | if ( nvcpu->nv_vvmcxaddr != gpa ) |
1706 | 0 | nvmx_purge_vvmcs(v); |
1707 | 0 |
|
1708 | 0 | if ( nvcpu->nv_vvmcxaddr == INVALID_PADDR ) |
1709 | 0 | { |
1710 | 0 | bool_t writable; |
1711 | 0 | void *vvmcx = hvm_map_guest_frame_rw(paddr_to_pfn(gpa), 1, &writable); |
1712 | 0 |
|
1713 | 0 | if ( vvmcx ) |
1714 | 0 | { |
1715 | 0 | if ( writable ) |
1716 | 0 | { |
1717 | 0 | struct vmcs_struct *vvmcs = vvmcx; |
1718 | 0 |
|
1719 | 0 | if ( ((vvmcs->vmcs_revision_id ^ vmx_basic_msr) & |
1720 | 0 | VMX_BASIC_REVISION_MASK) || |
1721 | 0 | (!cpu_has_vmx_vmcs_shadowing && |
1722 | 0 | (vvmcs->vmcs_revision_id & ~VMX_BASIC_REVISION_MASK)) ) |
1723 | 0 | { |
1724 | 0 | hvm_unmap_guest_frame(vvmcx, 1); |
1725 | 0 | vmfail(regs, VMX_INSN_VMPTRLD_INCORRECT_VMCS_ID); |
1726 | 0 |
|
1727 | 0 | return X86EMUL_OKAY; |
1728 | 0 | } |
1729 | 0 | nvcpu->nv_vvmcx = vvmcx; |
1730 | 0 | nvcpu->nv_vvmcxaddr = gpa; |
1731 | 0 | v->arch.hvm_vmx.vmcs_shadow_maddr = |
1732 | 0 | pfn_to_paddr(domain_page_map_to_mfn(vvmcx)); |
1733 | 0 | } |
1734 | 0 | else |
1735 | 0 | { |
1736 | 0 | hvm_unmap_guest_frame(vvmcx, 1); |
1737 | 0 | vvmcx = NULL; |
1738 | 0 | } |
1739 | 0 | } |
1740 | 0 | if ( !vvmcx || |
1741 | 0 | !map_io_bitmap_all(v) || |
1742 | 0 | !_map_msr_bitmap(v) ) |
1743 | 0 | { |
1744 | 0 | vmfail_valid(regs, VMX_INSN_VMPTRLD_INVALID_PHYADDR); |
1745 | 0 | goto out; |
1746 | 0 | } |
1747 | 0 | } |
1748 | 0 |
|
1749 | 0 | if ( cpu_has_vmx_vmcs_shadowing ) |
1750 | 0 | nvmx_set_vmcs_pointer(v, nvcpu->nv_vvmcx); |
1751 | 0 |
|
1752 | 0 | vmsucceed(regs); |
1753 | 0 |
|
1754 | 0 | out: |
1755 | 0 | return X86EMUL_OKAY; |
1756 | 0 | } |
1757 | | |
1758 | | int nvmx_handle_vmptrst(struct cpu_user_regs *regs) |
1759 | 0 | { |
1760 | 0 | struct vcpu *v = current; |
1761 | 0 | struct vmx_inst_decoded decode; |
1762 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1763 | 0 | pagefault_info_t pfinfo; |
1764 | 0 | unsigned long gpa = 0; |
1765 | 0 | int rc; |
1766 | 0 |
|
1767 | 0 | rc = decode_vmx_inst(regs, &decode, &gpa, 0); |
1768 | 0 | if ( rc != X86EMUL_OKAY ) |
1769 | 0 | return rc; |
1770 | 0 |
|
1771 | 0 | gpa = nvcpu->nv_vvmcxaddr; |
1772 | 0 |
|
1773 | 0 | rc = hvm_copy_to_guest_linear(decode.mem, &gpa, decode.len, 0, &pfinfo); |
1774 | 0 | if ( rc == HVMTRANS_bad_linear_to_gfn ) |
1775 | 0 | hvm_inject_page_fault(pfinfo.ec, pfinfo.linear); |
1776 | 0 | if ( rc != HVMTRANS_okay ) |
1777 | 0 | return X86EMUL_EXCEPTION; |
1778 | 0 |
|
1779 | 0 | vmsucceed(regs); |
1780 | 0 | return X86EMUL_OKAY; |
1781 | 0 | } |
1782 | | |
1783 | | int nvmx_handle_vmclear(struct cpu_user_regs *regs) |
1784 | 0 | { |
1785 | 0 | struct vcpu *v = current; |
1786 | 0 | struct vmx_inst_decoded decode; |
1787 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
1788 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
1789 | 0 | unsigned long gpa = 0; |
1790 | 0 | void *vvmcs; |
1791 | 0 | int rc; |
1792 | 0 |
|
1793 | 0 | rc = decode_vmx_inst(regs, &decode, &gpa, 0); |
1794 | 0 | if ( rc != X86EMUL_OKAY ) |
1795 | 0 | return rc; |
1796 | 0 |
|
1797 | 0 | BUILD_BUG_ON(X86EMUL_OKAY != VMSUCCEED); /* rc = VMSUCCEED; */ |
1798 | 0 | if ( gpa & 0xfff ) |
1799 | 0 | rc = VMFAIL_INVALID; |
1800 | 0 | else if ( gpa == nvcpu->nv_vvmcxaddr ) |
1801 | 0 | { |
1802 | 0 | if ( cpu_has_vmx_vmcs_shadowing ) |
1803 | 0 | nvmx_clear_vmcs_pointer(v, nvcpu->nv_vvmcx); |
1804 | 0 | clear_vvmcs_launched(&nvmx->launched_list, |
1805 | 0 | PFN_DOWN(v->arch.hvm_vmx.vmcs_shadow_maddr)); |
1806 | 0 | nvmx_purge_vvmcs(v); |
1807 | 0 | } |
1808 | 0 | else |
1809 | 0 | { |
1810 | 0 | /* Even if this VMCS isn't the current one, we must clear it. */ |
1811 | 0 | bool_t writable; |
1812 | 0 |
|
1813 | 0 | vvmcs = hvm_map_guest_frame_rw(paddr_to_pfn(gpa), 0, &writable); |
1814 | 0 | if ( vvmcs ) |
1815 | 0 | { |
1816 | 0 | if ( writable ) |
1817 | 0 | clear_vvmcs_launched(&nvmx->launched_list, |
1818 | 0 | domain_page_map_to_mfn(vvmcs)); |
1819 | 0 | else |
1820 | 0 | rc = VMFAIL_VALID; |
1821 | 0 | hvm_unmap_guest_frame(vvmcs, 0); |
1822 | 0 | } |
1823 | 0 | } |
1824 | 0 |
|
1825 | 0 | if ( rc == VMSUCCEED ) |
1826 | 0 | vmsucceed(regs); |
1827 | 0 | else if ( rc == VMFAIL_VALID ) |
1828 | 0 | vmfail_valid(regs, VMX_INSN_VMCLEAR_INVALID_PHYADDR); |
1829 | 0 | else |
1830 | 0 | vmfail_invalid(regs); |
1831 | 0 |
|
1832 | 0 | return X86EMUL_OKAY; |
1833 | 0 | } |
1834 | | |
1835 | | int nvmx_handle_vmread(struct cpu_user_regs *regs) |
1836 | 0 | { |
1837 | 0 | struct vcpu *v = current; |
1838 | 0 | struct vmx_inst_decoded decode; |
1839 | 0 | pagefault_info_t pfinfo; |
1840 | 0 | u64 value = 0; |
1841 | 0 | int rc; |
1842 | 0 |
|
1843 | 0 | rc = decode_vmx_inst(regs, &decode, NULL, 0); |
1844 | 0 | if ( rc != X86EMUL_OKAY ) |
1845 | 0 | return rc; |
1846 | 0 |
|
1847 | 0 | if ( vcpu_nestedhvm(v).nv_vvmcxaddr == INVALID_PADDR ) |
1848 | 0 | { |
1849 | 0 | vmfail_invalid(regs); |
1850 | 0 | return X86EMUL_OKAY; |
1851 | 0 | } |
1852 | 0 |
|
1853 | 0 | rc = get_vvmcs_safe(v, reg_read(regs, decode.reg2), &value); |
1854 | 0 | if ( rc != VMX_INSN_SUCCEED ) |
1855 | 0 | { |
1856 | 0 | vmfail(regs, rc); |
1857 | 0 | return X86EMUL_OKAY; |
1858 | 0 | } |
1859 | 0 |
|
1860 | 0 | switch ( decode.type ) { |
1861 | 0 | case VMX_INST_MEMREG_TYPE_MEMORY: |
1862 | 0 | rc = hvm_copy_to_guest_linear(decode.mem, &value, decode.len, 0, &pfinfo); |
1863 | 0 | if ( rc == HVMTRANS_bad_linear_to_gfn ) |
1864 | 0 | hvm_inject_page_fault(pfinfo.ec, pfinfo.linear); |
1865 | 0 | if ( rc != HVMTRANS_okay ) |
1866 | 0 | return X86EMUL_EXCEPTION; |
1867 | 0 | break; |
1868 | 0 | case VMX_INST_MEMREG_TYPE_REG: |
1869 | 0 | reg_write(regs, decode.reg1, value); |
1870 | 0 | break; |
1871 | 0 | } |
1872 | 0 |
|
1873 | 0 | vmsucceed(regs); |
1874 | 0 | return X86EMUL_OKAY; |
1875 | 0 | } |
1876 | | |
1877 | | int nvmx_handle_vmwrite(struct cpu_user_regs *regs) |
1878 | 0 | { |
1879 | 0 | struct vcpu *v = current; |
1880 | 0 | struct vmx_inst_decoded decode; |
1881 | 0 | unsigned long operand; |
1882 | 0 | u64 vmcs_encoding; |
1883 | 0 | bool_t okay = 1; |
1884 | 0 | enum vmx_insn_errno err; |
1885 | 0 |
|
1886 | 0 | if ( decode_vmx_inst(regs, &decode, &operand, 0) |
1887 | 0 | != X86EMUL_OKAY ) |
1888 | 0 | return X86EMUL_EXCEPTION; |
1889 | 0 |
|
1890 | 0 | if ( vcpu_nestedhvm(v).nv_vvmcxaddr == INVALID_PADDR ) |
1891 | 0 | { |
1892 | 0 | vmfail_invalid(regs); |
1893 | 0 | return X86EMUL_OKAY; |
1894 | 0 | } |
1895 | 0 |
|
1896 | 0 | vmcs_encoding = reg_read(regs, decode.reg2); |
1897 | 0 | err = set_vvmcs_safe(v, vmcs_encoding, operand); |
1898 | 0 | if ( err != VMX_INSN_SUCCEED ) |
1899 | 0 | { |
1900 | 0 | vmfail(regs, err); |
1901 | 0 | return X86EMUL_OKAY; |
1902 | 0 | } |
1903 | 0 |
|
1904 | 0 | switch ( vmcs_encoding & ~VMCS_HIGH(0) ) |
1905 | 0 | { |
1906 | 0 | case IO_BITMAP_A: |
1907 | 0 | okay = _map_io_bitmap(v, IO_BITMAP_A); |
1908 | 0 | break; |
1909 | 0 | case IO_BITMAP_B: |
1910 | 0 | okay = _map_io_bitmap(v, IO_BITMAP_B); |
1911 | 0 | break; |
1912 | 0 | case MSR_BITMAP: |
1913 | 0 | okay = _map_msr_bitmap(v); |
1914 | 0 | break; |
1915 | 0 | } |
1916 | 0 |
|
1917 | 0 | if ( okay ) |
1918 | 0 | vmsucceed(regs); |
1919 | 0 | else |
1920 | 0 | vmfail_valid(regs, VMX_INSN_UNSUPPORTED_VMCS_COMPONENT); |
1921 | 0 |
|
1922 | 0 | return X86EMUL_OKAY; |
1923 | 0 | } |
1924 | | |
1925 | | int nvmx_handle_invept(struct cpu_user_regs *regs) |
1926 | 0 | { |
1927 | 0 | struct vmx_inst_decoded decode; |
1928 | 0 | unsigned long eptp; |
1929 | 0 | int ret; |
1930 | 0 |
|
1931 | 0 | if ( (ret = decode_vmx_inst(regs, &decode, &eptp, 0)) != X86EMUL_OKAY ) |
1932 | 0 | return ret; |
1933 | 0 |
|
1934 | 0 | switch ( reg_read(regs, decode.reg2) ) |
1935 | 0 | { |
1936 | 0 | case INVEPT_SINGLE_CONTEXT: |
1937 | 0 | { |
1938 | 0 | np2m_flush_base(current, eptp); |
1939 | 0 | break; |
1940 | 0 | } |
1941 | 0 | case INVEPT_ALL_CONTEXT: |
1942 | 0 | p2m_flush_nestedp2m(current->domain); |
1943 | 0 | __invept(INVEPT_ALL_CONTEXT, 0, 0); |
1944 | 0 | break; |
1945 | 0 | default: |
1946 | 0 | vmfail_invalid(regs); |
1947 | 0 | return X86EMUL_OKAY; |
1948 | 0 | } |
1949 | 0 | vmsucceed(regs); |
1950 | 0 | return X86EMUL_OKAY; |
1951 | 0 | } |
1952 | | |
1953 | | int nvmx_handle_invvpid(struct cpu_user_regs *regs) |
1954 | 0 | { |
1955 | 0 | struct vmx_inst_decoded decode; |
1956 | 0 | unsigned long vpid; |
1957 | 0 | int ret; |
1958 | 0 |
|
1959 | 0 | if ( (ret = decode_vmx_inst(regs, &decode, &vpid, 0)) != X86EMUL_OKAY ) |
1960 | 0 | return ret; |
1961 | 0 |
|
1962 | 0 | switch ( reg_read(regs, decode.reg2) ) |
1963 | 0 | { |
1964 | 0 | /* Just invalidate all tlb entries for all types! */ |
1965 | 0 | case INVVPID_INDIVIDUAL_ADDR: |
1966 | 0 | case INVVPID_SINGLE_CONTEXT: |
1967 | 0 | case INVVPID_ALL_CONTEXT: |
1968 | 0 | hvm_asid_flush_vcpu_asid(&vcpu_nestedhvm(current).nv_n2asid); |
1969 | 0 | break; |
1970 | 0 | default: |
1971 | 0 | vmfail_invalid(regs); |
1972 | 0 | return X86EMUL_OKAY; |
1973 | 0 | } |
1974 | 0 |
|
1975 | 0 | vmsucceed(regs); |
1976 | 0 | return X86EMUL_OKAY; |
1977 | 0 | } |
1978 | | |
1979 | | #define __emul_value(enable1, default1) \ |
1980 | 0 | ((enable1 | default1) << 32 | (default1)) |
1981 | | |
1982 | | #define gen_vmx_msr(enable1, default1, host_value) \ |
1983 | 0 | (((__emul_value(enable1, default1) & host_value) & (~0ul << 32)) | \ |
1984 | 0 | ((uint32_t)(__emul_value(enable1, default1) | host_value))) |
1985 | | |
1986 | | /* |
1987 | | * Capability reporting |
1988 | | */ |
1989 | | int nvmx_msr_read_intercept(unsigned int msr, u64 *msr_content) |
1990 | 0 | { |
1991 | 0 | struct vcpu *v = current; |
1992 | 0 | struct domain *d = v->domain; |
1993 | 0 | u64 data = 0, host_data = 0; |
1994 | 0 | int r = 1; |
1995 | 0 |
|
1996 | 0 | /* VMX capablity MSRs are available only when guest supports VMX. */ |
1997 | 0 | if ( !nestedhvm_enabled(d) || !d->arch.cpuid->basic.vmx ) |
1998 | 0 | return 0; |
1999 | 0 |
|
2000 | 0 | /* |
2001 | 0 | * These MSRs are only available when flags in other MSRs are set. |
2002 | 0 | * These prerequisites are listed in the Intel 64 and IA-32 |
2003 | 0 | * Architectures Software Developer’s Manual, Vol 3, Appendix A. |
2004 | 0 | */ |
2005 | 0 | switch ( msr ) |
2006 | 0 | { |
2007 | 0 | case MSR_IA32_VMX_PROCBASED_CTLS2: |
2008 | 0 | if ( !cpu_has_vmx_secondary_exec_control ) |
2009 | 0 | return 0; |
2010 | 0 | break; |
2011 | 0 |
|
2012 | 0 | case MSR_IA32_VMX_EPT_VPID_CAP: |
2013 | 0 | if ( !(cpu_has_vmx_ept || cpu_has_vmx_vpid) ) |
2014 | 0 | return 0; |
2015 | 0 | break; |
2016 | 0 |
|
2017 | 0 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
2018 | 0 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
2019 | 0 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
2020 | 0 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
2021 | 0 | if ( !(vmx_basic_msr & VMX_BASIC_DEFAULT1_ZERO) ) |
2022 | 0 | return 0; |
2023 | 0 | break; |
2024 | 0 |
|
2025 | 0 | case MSR_IA32_VMX_VMFUNC: |
2026 | 0 | if ( !cpu_has_vmx_vmfunc ) |
2027 | 0 | return 0; |
2028 | 0 | break; |
2029 | 0 | } |
2030 | 0 |
|
2031 | 0 | rdmsrl(msr, host_data); |
2032 | 0 |
|
2033 | 0 | /* |
2034 | 0 | * Remove unsupport features from n1 guest capability MSR |
2035 | 0 | */ |
2036 | 0 | switch (msr) { |
2037 | 0 | case MSR_IA32_VMX_BASIC: |
2038 | 0 | { |
2039 | 0 | const struct vmcs_struct *vmcs = |
2040 | 0 | map_domain_page(_mfn(PFN_DOWN(v->arch.hvm_vmx.vmcs_pa))); |
2041 | 0 |
|
2042 | 0 | data = (host_data & (~0ul << 32)) | |
2043 | 0 | (vmcs->vmcs_revision_id & 0x7fffffff); |
2044 | 0 | unmap_domain_page(vmcs); |
2045 | 0 | break; |
2046 | 0 | } |
2047 | 0 | case MSR_IA32_VMX_PINBASED_CTLS: |
2048 | 0 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
2049 | 0 | /* 1-settings */ |
2050 | 0 | data = PIN_BASED_EXT_INTR_MASK | |
2051 | 0 | PIN_BASED_NMI_EXITING | |
2052 | 0 | PIN_BASED_PREEMPT_TIMER; |
2053 | 0 | data = gen_vmx_msr(data, VMX_PINBASED_CTLS_DEFAULT1, host_data); |
2054 | 0 | break; |
2055 | 0 | case MSR_IA32_VMX_PROCBASED_CTLS: |
2056 | 0 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
2057 | 0 | { |
2058 | 0 | u32 default1_bits = VMX_PROCBASED_CTLS_DEFAULT1; |
2059 | 0 | /* 1-settings */ |
2060 | 0 | data = CPU_BASED_HLT_EXITING | |
2061 | 0 | CPU_BASED_VIRTUAL_INTR_PENDING | |
2062 | 0 | CPU_BASED_CR8_LOAD_EXITING | |
2063 | 0 | CPU_BASED_CR8_STORE_EXITING | |
2064 | 0 | CPU_BASED_INVLPG_EXITING | |
2065 | 0 | CPU_BASED_CR3_LOAD_EXITING | |
2066 | 0 | CPU_BASED_CR3_STORE_EXITING | |
2067 | 0 | CPU_BASED_MONITOR_EXITING | |
2068 | 0 | CPU_BASED_MWAIT_EXITING | |
2069 | 0 | CPU_BASED_MOV_DR_EXITING | |
2070 | 0 | CPU_BASED_ACTIVATE_IO_BITMAP | |
2071 | 0 | CPU_BASED_USE_TSC_OFFSETING | |
2072 | 0 | CPU_BASED_UNCOND_IO_EXITING | |
2073 | 0 | CPU_BASED_RDTSC_EXITING | |
2074 | 0 | CPU_BASED_MONITOR_TRAP_FLAG | |
2075 | 0 | CPU_BASED_VIRTUAL_NMI_PENDING | |
2076 | 0 | CPU_BASED_ACTIVATE_MSR_BITMAP | |
2077 | 0 | CPU_BASED_PAUSE_EXITING | |
2078 | 0 | CPU_BASED_RDPMC_EXITING | |
2079 | 0 | CPU_BASED_TPR_SHADOW | |
2080 | 0 | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
2081 | 0 |
|
2082 | 0 | if ( msr == MSR_IA32_VMX_TRUE_PROCBASED_CTLS ) |
2083 | 0 | default1_bits &= ~(CPU_BASED_CR3_LOAD_EXITING | |
2084 | 0 | CPU_BASED_CR3_STORE_EXITING | |
2085 | 0 | CPU_BASED_INVLPG_EXITING); |
2086 | 0 |
|
2087 | 0 | data = gen_vmx_msr(data, default1_bits, host_data); |
2088 | 0 | break; |
2089 | 0 | } |
2090 | 0 | case MSR_IA32_VMX_PROCBASED_CTLS2: |
2091 | 0 | /* 1-settings */ |
2092 | 0 | data = SECONDARY_EXEC_DESCRIPTOR_TABLE_EXITING | |
2093 | 0 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
2094 | 0 | SECONDARY_EXEC_ENABLE_VPID | |
2095 | 0 | SECONDARY_EXEC_UNRESTRICTED_GUEST | |
2096 | 0 | SECONDARY_EXEC_ENABLE_EPT; |
2097 | 0 | data = gen_vmx_msr(data, 0, host_data); |
2098 | 0 | break; |
2099 | 0 | case MSR_IA32_VMX_EXIT_CTLS: |
2100 | 0 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
2101 | 0 | /* 1-settings */ |
2102 | 0 | data = VM_EXIT_ACK_INTR_ON_EXIT | |
2103 | 0 | VM_EXIT_IA32E_MODE | |
2104 | 0 | VM_EXIT_SAVE_PREEMPT_TIMER | |
2105 | 0 | VM_EXIT_SAVE_GUEST_PAT | |
2106 | 0 | VM_EXIT_LOAD_HOST_PAT | |
2107 | 0 | VM_EXIT_SAVE_GUEST_EFER | |
2108 | 0 | VM_EXIT_LOAD_HOST_EFER | |
2109 | 0 | VM_EXIT_LOAD_PERF_GLOBAL_CTRL; |
2110 | 0 | data = gen_vmx_msr(data, VMX_EXIT_CTLS_DEFAULT1, host_data); |
2111 | 0 | break; |
2112 | 0 | case MSR_IA32_VMX_ENTRY_CTLS: |
2113 | 0 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
2114 | 0 | /* 1-settings */ |
2115 | 0 | data = VM_ENTRY_LOAD_GUEST_PAT | |
2116 | 0 | VM_ENTRY_LOAD_GUEST_EFER | |
2117 | 0 | VM_ENTRY_LOAD_PERF_GLOBAL_CTRL | |
2118 | 0 | VM_ENTRY_IA32E_MODE; |
2119 | 0 | data = gen_vmx_msr(data, VMX_ENTRY_CTLS_DEFAULT1, host_data); |
2120 | 0 | break; |
2121 | 0 |
|
2122 | 0 | case MSR_IA32_VMX_VMCS_ENUM: |
2123 | 0 | /* The max index of VVMCS encoding is 0x1f. */ |
2124 | 0 | data = 0x1f << 1; |
2125 | 0 | break; |
2126 | 0 | case MSR_IA32_VMX_CR0_FIXED0: |
2127 | 0 | /* PG, PE bits must be 1 in VMX operation */ |
2128 | 0 | data = X86_CR0_PE | X86_CR0_PG; |
2129 | 0 | break; |
2130 | 0 | case MSR_IA32_VMX_CR0_FIXED1: |
2131 | 0 | /* allow 0-settings for all bits */ |
2132 | 0 | data = 0xffffffff; |
2133 | 0 | break; |
2134 | 0 | case MSR_IA32_VMX_CR4_FIXED0: |
2135 | 0 | /* VMXE bit must be 1 in VMX operation */ |
2136 | 0 | data = X86_CR4_VMXE; |
2137 | 0 | break; |
2138 | 0 | case MSR_IA32_VMX_CR4_FIXED1: |
2139 | 0 | data = hvm_cr4_guest_valid_bits(v, 0); |
2140 | 0 | break; |
2141 | 0 | case MSR_IA32_VMX_MISC: |
2142 | 0 | /* Do not support CR3-target feature now */ |
2143 | 0 | data = host_data & ~VMX_MISC_CR3_TARGET; |
2144 | 0 | break; |
2145 | 0 | case MSR_IA32_VMX_EPT_VPID_CAP: |
2146 | 0 | data = nept_get_ept_vpid_cap(); |
2147 | 0 | break; |
2148 | 0 | default: |
2149 | 0 | r = 0; |
2150 | 0 | break; |
2151 | 0 | } |
2152 | 0 |
|
2153 | 0 | *msr_content = data; |
2154 | 0 | return r; |
2155 | 0 | } |
2156 | | |
2157 | | /* This function uses L2_gpa to walk the P2M page table in L1. If the |
2158 | | * walk is successful, the translated value is returned in |
2159 | | * L1_gpa. The result value tells what to do next. |
2160 | | */ |
2161 | | int |
2162 | | nvmx_hap_walk_L1_p2m(struct vcpu *v, paddr_t L2_gpa, paddr_t *L1_gpa, |
2163 | | unsigned int *page_order, uint8_t *p2m_acc, |
2164 | | bool_t access_r, bool_t access_w, bool_t access_x) |
2165 | 0 | { |
2166 | 0 | int rc; |
2167 | 0 | unsigned long gfn; |
2168 | 0 | uint64_t exit_qual; |
2169 | 0 | uint32_t exit_reason = EXIT_REASON_EPT_VIOLATION; |
2170 | 0 | uint32_t rwx_rights = (access_x << 2) | (access_w << 1) | access_r; |
2171 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
2172 | 0 |
|
2173 | 0 | vmx_vmcs_enter(v); |
2174 | 0 |
|
2175 | 0 | __vmread(EXIT_QUALIFICATION, &exit_qual); |
2176 | 0 | rc = nept_translate_l2ga(v, L2_gpa, page_order, rwx_rights, &gfn, p2m_acc, |
2177 | 0 | &exit_qual, &exit_reason); |
2178 | 0 | switch ( rc ) |
2179 | 0 | { |
2180 | 0 | case EPT_TRANSLATE_SUCCEED: |
2181 | 0 | *L1_gpa = (gfn << PAGE_SHIFT) + (L2_gpa & ~PAGE_MASK); |
2182 | 0 | rc = NESTEDHVM_PAGEFAULT_DONE; |
2183 | 0 | break; |
2184 | 0 | case EPT_TRANSLATE_VIOLATION: |
2185 | 0 | case EPT_TRANSLATE_MISCONFIG: |
2186 | 0 | rc = NESTEDHVM_PAGEFAULT_INJECT; |
2187 | 0 | nvmx->ept.exit_reason = exit_reason; |
2188 | 0 | nvmx->ept.exit_qual = exit_qual; |
2189 | 0 | break; |
2190 | 0 | case EPT_TRANSLATE_RETRY: |
2191 | 0 | rc = NESTEDHVM_PAGEFAULT_RETRY; |
2192 | 0 | break; |
2193 | 0 | default: |
2194 | 0 | gdprintk(XENLOG_ERR, "GUEST EPT translation error!:%d\n", rc); |
2195 | 0 | BUG(); |
2196 | 0 | break; |
2197 | 0 | } |
2198 | 0 |
|
2199 | 0 | vmx_vmcs_exit(v); |
2200 | 0 |
|
2201 | 0 | return rc; |
2202 | 0 | } |
2203 | | |
2204 | | void nvmx_idtv_handling(void) |
2205 | 0 | { |
2206 | 0 | struct vcpu *v = current; |
2207 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
2208 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
2209 | 0 | unsigned long idtv_info, reason; |
2210 | 0 |
|
2211 | 0 | __vmread(IDT_VECTORING_INFO, &idtv_info); |
2212 | 0 | if ( likely(!(idtv_info & INTR_INFO_VALID_MASK)) ) |
2213 | 0 | return; |
2214 | 0 |
|
2215 | 0 | /* |
2216 | 0 | * If L0 can solve the fault that causes idt vectoring, it should |
2217 | 0 | * be reinjected, otherwise, pass to L1. |
2218 | 0 | */ |
2219 | 0 | __vmread(VM_EXIT_REASON, &reason); |
2220 | 0 | if ( reason != EXIT_REASON_EPT_VIOLATION ? |
2221 | 0 | !(nvmx->intr.intr_info & INTR_INFO_VALID_MASK) : |
2222 | 0 | !nvcpu->nv_vmexit_pending ) |
2223 | 0 | { |
2224 | 0 | __vmwrite(VM_ENTRY_INTR_INFO, idtv_info & ~INTR_INFO_RESVD_BITS_MASK); |
2225 | 0 | if ( idtv_info & INTR_INFO_DELIVER_CODE_MASK ) |
2226 | 0 | { |
2227 | 0 | __vmread(IDT_VECTORING_ERROR_CODE, &reason); |
2228 | 0 | __vmwrite(VM_ENTRY_EXCEPTION_ERROR_CODE, reason); |
2229 | 0 | } |
2230 | 0 | /* |
2231 | 0 | * SDM 23.2.4, if L1 tries to inject a software interrupt |
2232 | 0 | * and the delivery fails, VM_EXIT_INSTRUCTION_LEN receives |
2233 | 0 | * the value of previous VM_ENTRY_INSTRUCTION_LEN. |
2234 | 0 | * |
2235 | 0 | * This means EXIT_INSTRUCTION_LEN is always valid here, for |
2236 | 0 | * software interrupts both injected by L1, and generated in L2. |
2237 | 0 | */ |
2238 | 0 | __vmread(VM_EXIT_INSTRUCTION_LEN, &reason); |
2239 | 0 | __vmwrite(VM_ENTRY_INSTRUCTION_LEN, reason); |
2240 | 0 | } |
2241 | 0 | } |
2242 | | |
2243 | | /* |
2244 | | * L2 VMExit handling |
2245 | | * return 1: Done or skip the normal layer 0 hypervisor process. |
2246 | | * Typically it requires layer 1 hypervisor processing |
2247 | | * or it may be already processed here. |
2248 | | * 0: Require the normal layer 0 process. |
2249 | | */ |
2250 | | int nvmx_n2_vmexit_handler(struct cpu_user_regs *regs, |
2251 | | unsigned int exit_reason) |
2252 | 0 | { |
2253 | 0 | struct vcpu *v = current; |
2254 | 0 | struct nestedvcpu *nvcpu = &vcpu_nestedhvm(v); |
2255 | 0 | struct nestedvmx *nvmx = &vcpu_2_nvmx(v); |
2256 | 0 | u32 ctrl; |
2257 | 0 |
|
2258 | 0 | nvcpu->nv_vmexit_pending = 0; |
2259 | 0 | nvmx->intr.intr_info = 0; |
2260 | 0 | nvmx->intr.error_code = 0; |
2261 | 0 |
|
2262 | 0 | switch (exit_reason) { |
2263 | 0 | case EXIT_REASON_EXCEPTION_NMI: |
2264 | 0 | { |
2265 | 0 | unsigned long intr_info; |
2266 | 0 | u32 valid_mask = MASK_INSR(X86_EVENTTYPE_HW_EXCEPTION, |
2267 | 0 | INTR_INFO_INTR_TYPE_MASK) | |
2268 | 0 | INTR_INFO_VALID_MASK; |
2269 | 0 | u64 exec_bitmap; |
2270 | 0 | int vector; |
2271 | 0 |
|
2272 | 0 | __vmread(VM_EXIT_INTR_INFO, &intr_info); |
2273 | 0 | vector = intr_info & INTR_INFO_VECTOR_MASK; |
2274 | 0 | /* |
2275 | 0 | * decided by L0 and L1 exception bitmap, if the vetor is set by |
2276 | 0 | * both, L0 has priority on #PF and #NM, L1 has priority on others |
2277 | 0 | */ |
2278 | 0 | if ( vector == TRAP_page_fault ) |
2279 | 0 | { |
2280 | 0 | if ( paging_mode_hap(v->domain) ) |
2281 | 0 | nvcpu->nv_vmexit_pending = 1; |
2282 | 0 | } |
2283 | 0 | else if ( vector == TRAP_no_device ) |
2284 | 0 | { |
2285 | 0 | if ( v->fpu_dirtied ) |
2286 | 0 | nvcpu->nv_vmexit_pending = 1; |
2287 | 0 | } |
2288 | 0 | else if ( (intr_info & valid_mask) == valid_mask ) |
2289 | 0 | { |
2290 | 0 | exec_bitmap = get_vvmcs(v, EXCEPTION_BITMAP); |
2291 | 0 |
|
2292 | 0 | if ( exec_bitmap & (1 << vector) ) |
2293 | 0 | nvcpu->nv_vmexit_pending = 1; |
2294 | 0 | } |
2295 | 0 | break; |
2296 | 0 | } |
2297 | 0 | case EXIT_REASON_WBINVD: |
2298 | 0 | case EXIT_REASON_EPT_VIOLATION: |
2299 | 0 | case EXIT_REASON_EPT_MISCONFIG: |
2300 | 0 | case EXIT_REASON_EXTERNAL_INTERRUPT: |
2301 | 0 | /* pass to L0 handler */ |
2302 | 0 | break; |
2303 | 0 | case VMX_EXIT_REASONS_FAILED_VMENTRY: |
2304 | 0 | case EXIT_REASON_TRIPLE_FAULT: |
2305 | 0 | case EXIT_REASON_TASK_SWITCH: |
2306 | 0 | case EXIT_REASON_CPUID: |
2307 | 0 | case EXIT_REASON_VMCALL: |
2308 | 0 | case EXIT_REASON_VMCLEAR: |
2309 | 0 | case EXIT_REASON_VMLAUNCH: |
2310 | 0 | case EXIT_REASON_VMPTRLD: |
2311 | 0 | case EXIT_REASON_VMPTRST: |
2312 | 0 | case EXIT_REASON_VMREAD: |
2313 | 0 | case EXIT_REASON_VMRESUME: |
2314 | 0 | case EXIT_REASON_VMWRITE: |
2315 | 0 | case EXIT_REASON_VMXOFF: |
2316 | 0 | case EXIT_REASON_VMXON: |
2317 | 0 | case EXIT_REASON_INVEPT: |
2318 | 0 | case EXIT_REASON_XSETBV: |
2319 | 0 | /* inject to L1 */ |
2320 | 0 | nvcpu->nv_vmexit_pending = 1; |
2321 | 0 | break; |
2322 | 0 |
|
2323 | 0 | case EXIT_REASON_MSR_READ: |
2324 | 0 | case EXIT_REASON_MSR_WRITE: |
2325 | 0 | ctrl = __n2_exec_control(v); |
2326 | 0 |
|
2327 | 0 | /* Without ACTIVATE_MSR_BITMAP, all MSRs are intercepted. */ |
2328 | 0 | if ( !(ctrl & CPU_BASED_ACTIVATE_MSR_BITMAP) ) |
2329 | 0 | nvcpu->nv_vmexit_pending = 1; |
2330 | 0 | else if ( !nvmx->msrbitmap ) |
2331 | 0 | /* ACTIVATE_MSR_BITMAP set, but L2 bitmap not mapped??? */ |
2332 | 0 | domain_crash(v->domain); |
2333 | 0 | else |
2334 | 0 | nvcpu->nv_vmexit_pending = |
2335 | 0 | vmx_msr_is_intercepted(nvmx->msrbitmap, regs->ecx, |
2336 | 0 | exit_reason == EXIT_REASON_MSR_WRITE); |
2337 | 0 | break; |
2338 | 0 |
|
2339 | 0 | case EXIT_REASON_IO_INSTRUCTION: |
2340 | 0 | ctrl = __n2_exec_control(v); |
2341 | 0 | if ( ctrl & CPU_BASED_ACTIVATE_IO_BITMAP ) |
2342 | 0 | { |
2343 | 0 | unsigned long qual; |
2344 | 0 | u16 port, size; |
2345 | 0 |
|
2346 | 0 | __vmread(EXIT_QUALIFICATION, &qual); |
2347 | 0 | port = qual >> 16; |
2348 | 0 | size = (qual & 7) + 1; |
2349 | 0 | do { |
2350 | 0 | const u8 *bitmap = nvmx->iobitmap[port >> 15]; |
2351 | 0 |
|
2352 | 0 | if ( bitmap[(port & 0x7fff) >> 3] & (1 << (port & 7)) ) |
2353 | 0 | nvcpu->nv_vmexit_pending = 1; |
2354 | 0 | if ( !--size ) |
2355 | 0 | break; |
2356 | 0 | if ( !++port ) |
2357 | 0 | nvcpu->nv_vmexit_pending = 1; |
2358 | 0 | } while ( !nvcpu->nv_vmexit_pending ); |
2359 | 0 | if ( !nvcpu->nv_vmexit_pending ) |
2360 | 0 | printk(XENLOG_G_WARNING "L0 PIO %04x\n", port); |
2361 | 0 | } |
2362 | 0 | else if ( ctrl & CPU_BASED_UNCOND_IO_EXITING ) |
2363 | 0 | nvcpu->nv_vmexit_pending = 1; |
2364 | 0 | break; |
2365 | 0 |
|
2366 | 0 | case EXIT_REASON_PENDING_VIRT_INTR: |
2367 | 0 | ctrl = __n2_exec_control(v); |
2368 | 0 | if ( ctrl & CPU_BASED_VIRTUAL_INTR_PENDING ) |
2369 | 0 | nvcpu->nv_vmexit_pending = 1; |
2370 | 0 | break; |
2371 | 0 | case EXIT_REASON_PENDING_VIRT_NMI: |
2372 | 0 | ctrl = __n2_exec_control(v); |
2373 | 0 | if ( ctrl & CPU_BASED_VIRTUAL_NMI_PENDING ) |
2374 | 0 | nvcpu->nv_vmexit_pending = 1; |
2375 | 0 | break; |
2376 | 0 | case EXIT_REASON_MONITOR_TRAP_FLAG: |
2377 | 0 | ctrl = __n2_exec_control(v); |
2378 | 0 | if ( ctrl & CPU_BASED_MONITOR_TRAP_FLAG) |
2379 | 0 | nvcpu->nv_vmexit_pending = 1; |
2380 | 0 | break; |
2381 | 0 | case EXIT_REASON_ACCESS_GDTR_OR_IDTR: |
2382 | 0 | case EXIT_REASON_ACCESS_LDTR_OR_TR: |
2383 | 0 | ctrl = __n2_secondary_exec_control(v); |
2384 | 0 | if ( ctrl & SECONDARY_EXEC_DESCRIPTOR_TABLE_EXITING ) |
2385 | 0 | nvcpu->nv_vmexit_pending = 1; |
2386 | 0 | break; |
2387 | 0 | case EXIT_REASON_VMX_PREEMPTION_TIMER_EXPIRED: |
2388 | 0 | ctrl = __n2_pin_exec_control(v); |
2389 | 0 | if ( ctrl & PIN_BASED_PREEMPT_TIMER ) |
2390 | 0 | nvcpu->nv_vmexit_pending = 1; |
2391 | 0 | break; |
2392 | 0 | /* L1 has priority handling several other types of exits */ |
2393 | 0 | case EXIT_REASON_HLT: |
2394 | 0 | ctrl = __n2_exec_control(v); |
2395 | 0 | if ( ctrl & CPU_BASED_HLT_EXITING ) |
2396 | 0 | nvcpu->nv_vmexit_pending = 1; |
2397 | 0 | break; |
2398 | 0 | case EXIT_REASON_RDTSC: |
2399 | 0 | ctrl = __n2_exec_control(v); |
2400 | 0 | if ( ctrl & CPU_BASED_RDTSC_EXITING ) |
2401 | 0 | nvcpu->nv_vmexit_pending = 1; |
2402 | 0 | else |
2403 | 0 | { |
2404 | 0 | /* |
2405 | 0 | * special handler is needed if L1 doesn't intercept rdtsc, |
2406 | 0 | * avoiding changing guest_tsc and messing up timekeeping in L1 |
2407 | 0 | */ |
2408 | 0 | msr_split(regs, hvm_get_guest_tsc(v) + get_vvmcs(v, TSC_OFFSET)); |
2409 | 0 | update_guest_eip(); |
2410 | 0 |
|
2411 | 0 | return 1; |
2412 | 0 | } |
2413 | 0 | break; |
2414 | 0 | case EXIT_REASON_RDPMC: |
2415 | 0 | ctrl = __n2_exec_control(v); |
2416 | 0 | if ( ctrl & CPU_BASED_RDPMC_EXITING ) |
2417 | 0 | nvcpu->nv_vmexit_pending = 1; |
2418 | 0 | break; |
2419 | 0 | case EXIT_REASON_MWAIT_INSTRUCTION: |
2420 | 0 | ctrl = __n2_exec_control(v); |
2421 | 0 | if ( ctrl & CPU_BASED_MWAIT_EXITING ) |
2422 | 0 | nvcpu->nv_vmexit_pending = 1; |
2423 | 0 | break; |
2424 | 0 | case EXIT_REASON_PAUSE_INSTRUCTION: |
2425 | 0 | ctrl = __n2_exec_control(v); |
2426 | 0 | if ( ctrl & CPU_BASED_PAUSE_EXITING ) |
2427 | 0 | nvcpu->nv_vmexit_pending = 1; |
2428 | 0 | break; |
2429 | 0 | case EXIT_REASON_MONITOR_INSTRUCTION: |
2430 | 0 | ctrl = __n2_exec_control(v); |
2431 | 0 | if ( ctrl & CPU_BASED_MONITOR_EXITING ) |
2432 | 0 | nvcpu->nv_vmexit_pending = 1; |
2433 | 0 | break; |
2434 | 0 | case EXIT_REASON_DR_ACCESS: |
2435 | 0 | ctrl = __n2_exec_control(v); |
2436 | 0 | if ( (ctrl & CPU_BASED_MOV_DR_EXITING) && |
2437 | 0 | v->arch.hvm_vcpu.flag_dr_dirty ) |
2438 | 0 | nvcpu->nv_vmexit_pending = 1; |
2439 | 0 | break; |
2440 | 0 | case EXIT_REASON_INVLPG: |
2441 | 0 | ctrl = __n2_exec_control(v); |
2442 | 0 | if ( ctrl & CPU_BASED_INVLPG_EXITING ) |
2443 | 0 | nvcpu->nv_vmexit_pending = 1; |
2444 | 0 | break; |
2445 | 0 | case EXIT_REASON_CR_ACCESS: |
2446 | 0 | { |
2447 | 0 | unsigned long exit_qualification; |
2448 | 0 | int cr, write; |
2449 | 0 | u32 mask = 0; |
2450 | 0 |
|
2451 | 0 | __vmread(EXIT_QUALIFICATION, &exit_qualification); |
2452 | 0 | cr = VMX_CONTROL_REG_ACCESS_NUM(exit_qualification); |
2453 | 0 | write = VMX_CONTROL_REG_ACCESS_TYPE(exit_qualification); |
2454 | 0 | /* also according to guest exec_control */ |
2455 | 0 | ctrl = __n2_exec_control(v); |
2456 | 0 |
|
2457 | 0 | if ( cr == 3 ) |
2458 | 0 | { |
2459 | 0 | mask = write? CPU_BASED_CR3_STORE_EXITING: |
2460 | 0 | CPU_BASED_CR3_LOAD_EXITING; |
2461 | 0 | if ( ctrl & mask ) |
2462 | 0 | nvcpu->nv_vmexit_pending = 1; |
2463 | 0 | } |
2464 | 0 | else if ( cr == 8 ) |
2465 | 0 | { |
2466 | 0 | mask = write? CPU_BASED_CR8_STORE_EXITING: |
2467 | 0 | CPU_BASED_CR8_LOAD_EXITING; |
2468 | 0 | if ( ctrl & mask ) |
2469 | 0 | nvcpu->nv_vmexit_pending = 1; |
2470 | 0 | } |
2471 | 0 | else /* CR0, CR4, CLTS, LMSW */ |
2472 | 0 | { |
2473 | 0 | /* |
2474 | 0 | * While getting the VM exit for CR0/CR4 access, check if L1 VMM owns |
2475 | 0 | * the bit. |
2476 | 0 | * If so, inject the VM exit to L1 VMM. |
2477 | 0 | * Otherwise, L0 will handle it and sync the value to L1 virtual VMCS. |
2478 | 0 | */ |
2479 | 0 | unsigned long old_val, val, changed_bits; |
2480 | 0 | switch ( VMX_CONTROL_REG_ACCESS_TYPE(exit_qualification) ) |
2481 | 0 | { |
2482 | 0 | case VMX_CONTROL_REG_ACCESS_TYPE_MOV_TO_CR: |
2483 | 0 | { |
2484 | 0 | unsigned long gp = VMX_CONTROL_REG_ACCESS_GPR(exit_qualification); |
2485 | 0 | unsigned long *reg; |
2486 | 0 |
|
2487 | 0 | if ( (reg = decode_register(gp, guest_cpu_user_regs(), 0)) == NULL ) |
2488 | 0 | { |
2489 | 0 | gdprintk(XENLOG_ERR, "invalid gpr: %lx\n", gp); |
2490 | 0 | break; |
2491 | 0 | } |
2492 | 0 | val = *reg; |
2493 | 0 | if ( cr == 0 ) |
2494 | 0 | { |
2495 | 0 | u64 cr0_gh_mask = get_vvmcs(v, CR0_GUEST_HOST_MASK); |
2496 | 0 |
|
2497 | 0 | __vmread(CR0_READ_SHADOW, &old_val); |
2498 | 0 | changed_bits = old_val ^ val; |
2499 | 0 | if ( changed_bits & cr0_gh_mask ) |
2500 | 0 | nvcpu->nv_vmexit_pending = 1; |
2501 | 0 | else |
2502 | 0 | { |
2503 | 0 | u64 guest_cr0 = get_vvmcs(v, GUEST_CR0); |
2504 | 0 |
|
2505 | 0 | set_vvmcs(v, GUEST_CR0, |
2506 | 0 | (guest_cr0 & cr0_gh_mask) | (val & ~cr0_gh_mask)); |
2507 | 0 | } |
2508 | 0 | } |
2509 | 0 | else if ( cr == 4 ) |
2510 | 0 | { |
2511 | 0 | u64 cr4_gh_mask = get_vvmcs(v, CR4_GUEST_HOST_MASK); |
2512 | 0 |
|
2513 | 0 | __vmread(CR4_READ_SHADOW, &old_val); |
2514 | 0 | changed_bits = old_val ^ val; |
2515 | 0 | if ( changed_bits & cr4_gh_mask ) |
2516 | 0 | nvcpu->nv_vmexit_pending = 1; |
2517 | 0 | else |
2518 | 0 | { |
2519 | 0 | u64 guest_cr4 = get_vvmcs(v, GUEST_CR4); |
2520 | 0 |
|
2521 | 0 | set_vvmcs(v, GUEST_CR4, |
2522 | 0 | (guest_cr4 & cr4_gh_mask) | (val & ~cr4_gh_mask)); |
2523 | 0 | } |
2524 | 0 | } |
2525 | 0 | else |
2526 | 0 | nvcpu->nv_vmexit_pending = 1; |
2527 | 0 | break; |
2528 | 0 | } |
2529 | 0 | case VMX_CONTROL_REG_ACCESS_TYPE_CLTS: |
2530 | 0 | { |
2531 | 0 | u64 cr0_gh_mask = get_vvmcs(v, CR0_GUEST_HOST_MASK); |
2532 | 0 |
|
2533 | 0 | if ( cr0_gh_mask & X86_CR0_TS ) |
2534 | 0 | nvcpu->nv_vmexit_pending = 1; |
2535 | 0 | else |
2536 | 0 | { |
2537 | 0 | u64 guest_cr0 = get_vvmcs(v, GUEST_CR0); |
2538 | 0 |
|
2539 | 0 | set_vvmcs(v, GUEST_CR0, (guest_cr0 & ~X86_CR0_TS)); |
2540 | 0 | } |
2541 | 0 | break; |
2542 | 0 | } |
2543 | 0 | case VMX_CONTROL_REG_ACCESS_TYPE_LMSW: |
2544 | 0 | { |
2545 | 0 | u64 cr0_gh_mask = get_vvmcs(v, CR0_GUEST_HOST_MASK); |
2546 | 0 |
|
2547 | 0 | __vmread(CR0_READ_SHADOW, &old_val); |
2548 | 0 | old_val &= X86_CR0_PE|X86_CR0_MP|X86_CR0_EM|X86_CR0_TS; |
2549 | 0 | val = VMX_CONTROL_REG_ACCESS_DATA(exit_qualification) & |
2550 | 0 | (X86_CR0_PE|X86_CR0_MP|X86_CR0_EM|X86_CR0_TS); |
2551 | 0 | changed_bits = old_val ^ val; |
2552 | 0 | if ( changed_bits & cr0_gh_mask ) |
2553 | 0 | nvcpu->nv_vmexit_pending = 1; |
2554 | 0 | else |
2555 | 0 | { |
2556 | 0 | u64 guest_cr0 = get_vvmcs(v, GUEST_CR0); |
2557 | 0 |
|
2558 | 0 | set_vvmcs(v, GUEST_CR0, (guest_cr0 & cr0_gh_mask) | (val & ~cr0_gh_mask)); |
2559 | 0 | } |
2560 | 0 | break; |
2561 | 0 | } |
2562 | 0 | default: |
2563 | 0 | break; |
2564 | 0 | } |
2565 | 0 | } |
2566 | 0 | break; |
2567 | 0 | } |
2568 | 0 | case EXIT_REASON_APIC_ACCESS: |
2569 | 0 | ctrl = __n2_secondary_exec_control(v); |
2570 | 0 | if ( ctrl & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES ) |
2571 | 0 | nvcpu->nv_vmexit_pending = 1; |
2572 | 0 | break; |
2573 | 0 | case EXIT_REASON_TPR_BELOW_THRESHOLD: |
2574 | 0 | ctrl = __n2_exec_control(v); |
2575 | 0 | if ( ctrl & CPU_BASED_TPR_SHADOW ) |
2576 | 0 | nvcpu->nv_vmexit_pending = 1; |
2577 | 0 | break; |
2578 | 0 | default: |
2579 | 0 | gprintk(XENLOG_ERR, "Unexpected nested vmexit: reason %u\n", |
2580 | 0 | exit_reason); |
2581 | 0 | } |
2582 | 0 |
|
2583 | 0 | return ( nvcpu->nv_vmexit_pending == 1 ); |
2584 | 0 | } |
2585 | | |
2586 | | void nvmx_set_cr_read_shadow(struct vcpu *v, unsigned int cr) |
2587 | 0 | { |
2588 | 0 | unsigned long cr_field, read_shadow_field, mask_field; |
2589 | 0 |
|
2590 | 0 | switch ( cr ) |
2591 | 0 | { |
2592 | 0 | case 0: |
2593 | 0 | cr_field = GUEST_CR0; |
2594 | 0 | read_shadow_field = CR0_READ_SHADOW; |
2595 | 0 | mask_field = CR0_GUEST_HOST_MASK; |
2596 | 0 | break; |
2597 | 0 | case 4: |
2598 | 0 | cr_field = GUEST_CR4; |
2599 | 0 | read_shadow_field = CR4_READ_SHADOW; |
2600 | 0 | mask_field = CR4_GUEST_HOST_MASK; |
2601 | 0 | break; |
2602 | 0 | default: |
2603 | 0 | gdprintk(XENLOG_WARNING, "Set read shadow for CR%d.\n", cr); |
2604 | 0 | return; |
2605 | 0 | } |
2606 | 0 |
|
2607 | 0 | if ( !nestedhvm_vmswitch_in_progress(v) ) |
2608 | 0 | { |
2609 | 0 | unsigned long virtual_cr_mask = |
2610 | 0 | get_vvmcs(v, mask_field); |
2611 | 0 |
|
2612 | 0 | /* |
2613 | 0 | * We get here when L2 changed cr in a way that did not change |
2614 | 0 | * any of L1's shadowed bits (see nvmx_n2_vmexit_handler), |
2615 | 0 | * but did change L0 shadowed bits. So we first calculate the |
2616 | 0 | * effective cr value that L1 would like to write into the |
2617 | 0 | * hardware. It consists of the L2-owned bits from the new |
2618 | 0 | * value combined with the L1-owned bits from L1's guest cr. |
2619 | 0 | */ |
2620 | 0 | v->arch.hvm_vcpu.guest_cr[cr] &= ~virtual_cr_mask; |
2621 | 0 | v->arch.hvm_vcpu.guest_cr[cr] |= virtual_cr_mask & |
2622 | 0 | get_vvmcs(v, cr_field); |
2623 | 0 | } |
2624 | 0 |
|
2625 | 0 | /* nvcpu.guest_cr is what L2 write to cr actually. */ |
2626 | 0 | __vmwrite(read_shadow_field, v->arch.hvm_vcpu.nvcpu.guest_cr[cr]); |
2627 | 0 | } |
2628 | | |
2629 | | /* |
2630 | | * Local variables: |
2631 | | * mode: C |
2632 | | * c-file-style: "BSD" |
2633 | | * c-basic-offset: 4 |
2634 | | * tab-width: 4 |
2635 | | * indent-tabs-mode: nil |
2636 | | * End: |
2637 | | */ |