CPUID handling for guests

Andrew Cooper

Citrix XenServer

Friday 26th August 2016

Andrew Cooper (Citrix XenServer)

CPUID handling for guests

Friday 26th August 2016 1 / 11

3

→ ∃ > < ∃ >

The CPUID instruction

Introduced in 1993

- Takes input parameters in %eax and %ecx
- Returns values in %eax, %ebx, %ecx and %edx

A B A A B A

The CPUID instruction

- Introduced in 1993
 - Takes input parameters in %eax and %ecx
 - Returns values in %eax, %ebx, %ecx and %edx
- Return information about the processor
 - Identifying information (GenuineIntel, AuthenticAMD, etc)
 - Feature information (available instructions, MSRs, etc)
 - ► Topology information (sockets, cores, threads, caches, TLBs, etc)

A 12 N A 12 N

The CPUID instruction

- Introduced in 1993
 - Takes input parameters in %eax and %ecx
 - Returns values in %eax, %ebx, %ecx and %edx
- Return information about the processor
 - Identifying information (GenuineIntel, AuthenticAMD, etc)
 - Feature information (available instructions, MSRs, etc)
 - ► Topology information (sockets, cores, threads, caches, TLBs, etc)
- Unpriveleged
 - Useable by userspace
 - Doesn't trap to supervisor mode

4 1 1 4 1 4 1 4

• CPUID information don't change after boot

3

∃ → (∃ →

- CPUID information don't change after boot
- Some kernels binary patch themselves (e.g. Alternatives framework)
 - e.g. New features in fastpaths (SMAP)
 - e.g. Errata workarounds

< 回 ト < 三 ト < 三 ト

- CPUID information don't change after boot
- Some kernels binary patch themselves (e.g. Alternatives framework)
 - e.g. New features in fastpaths (SMAP)
 - e.g. Errata workarounds
- Userspace function dispatching at process start
 - e.g. Most efficient memset()
 - e.g. Hardware crypto if available
 - e.g. Audio or video processing

伺下 イヨト イヨト

- CPUID information don't change after boot
- Some kernels binary patch themselves (e.g. Alternatives framework)
 - e.g. New features in fastpaths (SMAP)
 - e.g. Errata workarounds
- Userspace function dispatching at process start
 - e.g. Most efficient memset()
 - e.g. Hardware crypto if available
 - e.g. Audio or video processing
- Migration modelled as suspend/resume
 - Not a reboot

通 ト イヨ ト イヨト

- CPUID information don't change after boot
- Some kernels binary patch themselves (e.g. Alternatives framework)
 - e.g. New features in fastpaths (SMAP)
 - e.g. Errata workarounds
- Userspace function dispatching at process start
 - e.g. Most efficient memset()
 - e.g. Hardware crypto if available
 - e.g. Audio or video processing
- Migration modelled as suspend/resume
 - Not a reboot
- Guest must not observe a loss of dependent features

直下 イヨト イヨト

• All features previously used need to continue functioning

All instructions, MSRs, etc

같아. 김 같

- All features previously used need to continue functioning
 - All instructions, MSRs, etc
- Available features controlled by:
 - CPU family, model and stepping
 - Firmware version and settings
 - Microcode version
 - Xen's hardware support and administrator choices

12 N 4 12 N

All features previously used need to continue functioning

- All instructions, MSRs, etc
- Available features controlled by:
 - CPU family, model and stepping
 - Firmware version and settings
 - Microcode version
 - Xen's hardware support and administrator choices
- Typically, "identical" servers are not
 - Different CPUs, especially on RMA'd hardware
 - Configuring firmware is tedious and error prone

A B A A B A

All features previously used need to continue functioning

- All instructions, MSRs, etc
- Available features controlled by:
 - CPU family, model and stepping
 - Firmware version and settings
 - Microcode version
 - Xen's hardware support and administrator choices
- Typically, "identical" servers are not
 - Different CPUs, especially on RMA'd hardware
 - Configuring firmware is tedious and error prone
- Must lie to guests (for their own good)

A B F A B F

- HVM guests
 - CPUID instruction traps to hypervisor
 - Xen can control all information seen

3

- HVM guests
 - CPUID instruction traps to hypervisor
 - Xen can control all information seen
- PV guests
 - CPUID instruction doesn't trap
 - Xen has no direct control

∃ ► < ∃ ►</p>

- HVM guests
 - CPUID instruction traps to hypervisor
 - Xen can control all information seen
- PV guests
 - CPUID instruction doesn't trap
 - Xen has no direct control
- PV Emulated CPUID
 - Software can opt in to Xen's control
 - Adhoc use in PV guest kernels, but not by userspace

E 5 4 E

- HVM guests
 - CPUID instruction traps to hypervisor
 - Xen can control all information seen
- PV guests
 - CPUID instruction doesn't trap
 - Xen has no direct control
- PV Emulated CPUID
 - Software can opt in to Xen's control
 - Adhoc use in PV guest kernels, but not by userspace
- CPUID Faulting
 - Non-architectural, but available in Intel IvyBridge and later
 - Causes CPUID to fault with #GP(0)
 - Xen can control all information seen

A B A A B A

- CPUID Masking
 - Non-architectural, "documented" only in whitepapers

3

프 에 에 프 어

- CPUID Masking
 - Non-architectural, "documented" only in whitepapers
- AMD (All hardware Xen can run on)
 - Override MSRs
 - Must be careful not to advertise features unsupported in silicon
 - Covers basic and extended feature leaves

A B A A B A

- CPUID Masking
 - Non-architectural, "documented" only in whitepapers
- AMD (All hardware Xen can run on)
 - Override MSRs
 - Must be careful not to advertise features unsupported in silicon
 - Covers basic and extended feature leaves
- Intel (only some Nehalem/Westmere processors, SandyBridge)
 - AND mask against the real hardware values
 - Different MSRs on different hardware
 - Covers basic, extended and xsave feature leaves

A B A A B A

- CPUID Masking
 - Non-architectural, "documented" only in whitepapers
- AMD (All hardware Xen can run on)
 - Override MSRs
 - Must be careful not to advertise features unsupported in silicon
 - Covers basic and extended feature leaves
- Intel (only some Nehalem/Westmere processors, SandyBridge)
 - AND mask against the real hardware values
 - Different MSRs on different hardware
 - Covers basic, extended and xsave feature leaves
- Magic CPUID bits
 - APIC and OSXSAVE bits fast forwarded from other state
 - Interaction with masking completely undocumented
 - Behaviour reverse engineered, hopefully right

通 ト イヨ ト イヨト

- Guests can probe for some features
 - 1GB Superpage support
 - AES instructions

b 4 T

• Guests can probe for some features

- 1GB Superpage support
- AES instructions
- Some features don't have feature bits
 - AMD's Long Mode Segment Limit Enable

• Guests can probe for some features

- 1GB Superpage support
- AES instructions
- Some features don't have feature bits
 - AMD's Long Mode Segment Limit Enable
- FPU pipeline behaviour exposed directly to guests
 - MXCSR_MASK
 - Intel's FPDP and FPCSDS

같아. 김 같

• Guests can probe for some features

- 1GB Superpage support
- AES instructions
- Some features don't have feature bits
 - AMD's Long Mode Segment Limit Enable
- FPU pipeline behaviour exposed directly to guests
 - MXCSR_MASK
 - Intel's FPDP and FPCSDS
- Some feature bits affect the interpretation of other leaves
 - ▶ CMP_LEGACY, HTT and X2APIC affect the topology interpretation
 - Can't control topology information with masking

4 2 5 4 2 5

- No real develoment since the uni-vcpu guest days
 - No concept of topology information

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- No real develoment since the uni-vcpu guest days
 - No concept of topology information
- No auditing of the toolstack-provided information
 - Lots of runtime adjustment to regain plausibility

A B A A B A

A

- No real develoment since the uni-vcpu guest days
 - No concept of topology information
- No auditing of the toolstack-provided information
 - Lots of runtime adjustment to regain plausibility
- Inconsistent whitelist/blacklist approach
 - Different approaches between different leaves
 - Different approaches between different guest types
 - Some information passed straight through from hardware

A D A D A D A

- No real develoment since the uni-vcpu guest days
 - No concept of topology information
- No auditing of the toolstack-provided information
 - Lots of runtime adjustment to regain plausibility
- Inconsistent whitelist/blacklist approach
 - Different approaches between different leaves
 - Different approaches between different guest types
 - Some information passed straight through from hardware
- No knowledge of feature dependency
 - Buggy assumptions in guests result in crashes

通 ト イヨ ト イヨト

- No real develoment since the uni-vcpu guest days
 - No concept of topology information
- No auditing of the toolstack-provided information
 - Lots of runtime adjustment to regain plausibility
- Inconsistent whitelist/blacklist approach
 - Different approaches between different leaves
 - Different approaches between different guest types
 - Some information passed straight through from hardware
- No knowledge of feature dependency
 - Buggy assumptions in guests result in crashes
- No way for the toolstack to evaluate the hardware capability
 - Feature internals exposed in the ABI, with no API

通 ト イヨ ト イヨト

- No real develoment since the uni-vcpu guest days
 - No concept of topology information
- No auditing of the toolstack-provided information
 - Lots of runtime adjustment to regain plausibility
- Inconsistent whitelist/blacklist approach
 - Different approaches between different leaves
 - Different approaches between different guest types
 - Some information passed straight through from hardware
- No knowledge of feature dependency
 - Buggy assumptions in guests result in crashes
- No way for the toolstack to evaluate the hardware capability
 - Feature internals exposed in the ABI, with no API
- PV dependence on leaked CPUID information
 - Hardware domain for C/P states, MTRRs
 - Control domain for building guests

- 4 同 6 4 日 6 4 日 6

CPUID-related improvements in Xen 4.7

- Introduce "a featureset" in the API/ABI
 - Keys as specified in architecture manuals
 - Can be treated as opaque by higher level software

A B F A B F

CPUID-related improvements in Xen 4.7

- Introduce "a featureset" in the API/ABI
 - Keys as specified in architecture manuals
 - Can be treated as opaque by higher level software
- At boot, Xen calculates featuresets for itself and the toolstack:

raw Features supported by hardwarehost Features used by Xen (after errata, command line, etc)pv Maximum featureset available for PV guestshvm Maximum featureset available for HVM guests

A 12 N A 12 N

CPUID-related improvements in Xen 4.7

- Introduce "a featureset" in the API/ABI
 - Keys as specified in architecture manuals
 - Can be treated as opaque by higher level software
- At boot, Xen calculates featuresets for itself and the toolstack:

raw Features supported by hardware
host Features used by Xen (after errata, command line, etc)
pv Maximum featureset available for PV guests
hvm Maximum featureset available for HVM guests

- Shared Xen/libxc algorithm for feature dependencies
 - Provides consistent logic between Xen and libxc
 - Build-time calculations to avoid complicated runtime logic

A D A D A D A

• Extend the featureset concept to a full CPUID policy

- Needs guest topology information
- ► Will allow control of MAXPHYSADDR

A B F A B F

• Extend the featureset concept to a full CPUID policy

- Needs guest topology information
- Will allow control of MAXPHYSADDR
- Improved hypercalls for policies
 - XEN_DOMCTL_get_cpuid_policy
 - Xen to audit policy plausibility at hypercall time, not runtime

A B F A B F

• Extend the featureset concept to a full CPUID policy

- Needs guest topology information
- Will allow control of MAXPHYSADDR
- Improved hypercalls for policies
 - XEN_DOMCTL_get_cpuid_policy
 - Xen to audit policy plausibility at hypercall time, not runtime
- More migration stream work
 - CPUID policy should be in the migration stream
 - Avoid mistakes when regenerating
 - Can finaly audit RAM/CPU state against reality
 - Allows for a pre-migrate check at the destination

10 / 11

< 同 ト く ヨ ト く ヨ ト

• Extend the featureset concept to a full CPUID policy

- Needs guest topology information
- Will allow control of MAXPHYSADDR
- Improved hypercalls for policies
 - XEN_DOMCTL_get_cpuid_policy
 - Xen to audit policy plausibility at hypercall time, not runtime
- More migration stream work
 - CPUID policy should be in the migration stream
 - Avoid mistakes when regenerating
 - Can finaly audit RAM/CPU state against reality
 - Allows for a pre-migrate check at the destination
- MSRs

10 / 11

・ 同 ト ・ 三 ト ・ 三 ト

CPUID handling for guests

Any Questions?

▲撮♪ ★ 置♪ ★ 置♪ 二 置