

1: Setting up Xen (<10minutes)

1.1: Install and configure Virtual Box (<2 minutes)

If you have not followed the instructions in xenbits.xen.org/people/larsk/xenexercise-
ossna18-prep.pdf and downloaded the ZIP file to $XenExercise (note: this is a shortcut for
the location where you zipped your downloaded files into) and pre-installed Virtual Box, you
can get images from a USB drive with a number of common virtual box install images. Copy
the files into your hard drive (again we will call the target location $XenExercise).

You should see:

If you have downloaded the files, but not installed them, $XenExercise will contain:

Then:

• Install Virtualbox (going through the install process)

• Double click on the Extension pack to install it

http://xenbits.xen.org/people/larsk/xenexercise-ossna18-prep.pdf
http://xenbits.xen.org/people/larsk/xenexercise-ossna18-prep.pdf

Before you start, go to File  Host Network Manager. If it does not show vboxnet0, press
create, after which you should see:

1.2: Import Virtual Box Image

Start VirtualBox and install the XenExercise.ova VirtualBox image by going to File 
Import Appliance in the menu bar.

Click the Open Appliance menu to select our OVA file. Once you have selected the file, click
Next.

The next window will show you the configuration of virtual appliance we use for the
exercise. You can scroll through the configuration list and double click on any item (or
check/uncheck the box) to make changes to it, but we set up everything for the demo.
Lastly, click Import.

Virtualbox will proceed to import the virtual machine into your library. The import should
take 1-2 minutes. Once the process is completed, you should be able to see the new VM in
your list.

1.2.1: Number of CPUs

Now we change the number of CPUs that Virtual Box will expose to the VM we just created:

we need 2 for the demo. Go to Settings  System  Processor and you will see

Put the slider to 2 CPUs (as long as it is in the green area) and press OK.

Background Note: The image has been set up to use two network configurations. You can
see these by going to Settings and the Network tab: and check and see whether

• Adaptor 1 is set to NAT.

• Adaptor 2 is attached to Host-only Adapter: under Advanced, Promiscuous Mode
should be set to Allow All. If this isn't set you won't be able to ssh into Xen Guests.

The VirtualBox network set-up is relatively unusual: normally we would set up a single
bridged network to allow for the ability of guests to connect to the internet while also
being able to ssh into guests from your laptop. However, for wifi networks bridging does
not work reliably. To work around this, we set up NAT – which allows internet access but
no ssh access, while Host-only allows ssh access. By setting up two adaptors, we can get
both.

Press Start on the newly created VM, which will start the exercise VM in Virtual Box, your
system will look like this:

At this point, we have a virtual environment that is equivalent to a dedicated machine with
CentOS 7 installed, on which you can then install the Xen Hypervisor.

You can now log into the host via root and xenroot from within the XenExercise window.

1.2.2: Keyboard Settings

Make sure you have your preferred keyboard set up: the default should be us: you can use

Dom0# localectl set-keymap <map>

to change this permanently.

1.2.3: Get your hosts IP address and open Terminal

Within the XenExercise window execute

Dom0# ip addr | grep 192.168

and write down the IP address. The one you can `ssh` to from a terminal will start with
`192.168`.

Open your favourite terminal and ssh in:

Dom0# ssh root@192.168.56.101

and write down the IP address. At this point you can hide the VirtualBox and XenExercise
window, as we will not need it anymore.

Note: Instead of writing down the IP addresses you can also edit the /etc/hosts file on
Linux and mac using. You can use the same approach with other guests that we create

$ sudo vi /etc/hosts

Adding, and then saving

XenExercise

192.168.56.101 dom0

On windows the file is in c:\Windows\System32\Drivers\etc\hosts and can be edited with
Notepad run as administrator.

1.2.4: Demo Directory

The image contains a few pre-downloaded files in

Dom0# ls -a /demo

• scripts: contains CentOS 7 networking scripts and other utility scripts

• images: this will be the location where we store demo related files

• master-images: pre-downloaded files for different types of guests

• mersienne-prime.py: a little compute intensive python workload

1.3: Installing Xen

Now install the packages that enable Xen. These are developed and maintained by the
CentOS Virt SIG:

Dom0# yum install -y centos-release-xen-48

Update to a Dom0 capable Linux Kernel:

Dom0# yum update -y kernel

Now install Xen

Dom0# yum install -y xen

Configure the Network – aka we enable Configure the Network – aka we enable host bridge
mode:

Dom0# /demo/scripts/bridge-setup.sh

and verify that it worked

Dom0# nmcli con

NAME UUID TYPE DEVICE

eth0 e21723e8-8149-4b15-aa48-cf0072a30621 ethernet eth0

eth1 6646618b-2e6c-4b58-aecd-f4213f83a067 ethernet eth1

xenbr0 6c0345ae-a1c8-4016-adcc-dbd18759d0d7 bridge xenbr0

xenbr1 e9091911-fc8d-4ff3-9c8a-2ac47da0f348 bridge xenbr1

In the example, xenbr0 is connected to eth0 and xenbr1 to eth1. In a standard set-up, you
would only have one bridge.

Then reboot: you may want to unhide the XenExercise window, such that you can see what
is happening to the system:

Dom0# reboot

When the VM boots, you should see the following bootloader menu:

Reconnect your console via ssh (see 1.2.3) after the reboot.

Note: We created an OVA image of the VM, called XenExercises-from2.ova, in case the
internet connection is poor. You should have downloaded this, or get it from the USB
drive that we have handed out. The file is in the OVA/Sections directory. Follow the
relevant steps in section 1.2 of this document.

2: Verifying the Xen Install & Start a Guest (<10minutes)

2.1: Exploring the Install Locations and Services

First, we are going to explore some file system locations post the Xen install

Dom0# ls /etc/xen

Contains example configuration file examples for VMs:

• xl.conf: global Xen configuration file

• xlexample.hvm, xlexample.pvlinux: examples for HVM and PV guests

• auto: autostart VMs after restart when the xendomains service is enabled, e.g.
ln -s /etc/xen/MY_DOMU_GUEST_1.cfg /etc/xen/auto/

• scripts: example scripts for networking, storage, …

Note that configuration files for Xen guests do not need to be stored in this directory, but
usually are.

Dom0# ls /usr/lib64/xen

• bin: contains binaries for System Services such as the Device Model (QEMU), that
run in Dom0. Note that this is not the only location for such services (you will also
find some in /proc/xen and other locations)

• boot: contains binaries related to booting guests

Note that on CentOS you can check which services are running via

Dom0# systemctl list-units --all | grep xen

While services are stopped or started via systemctl start|stop [service_name]

2.2: Exploring the System

The following command shows you Xen system information

Dom0# xl info

The following command shows the Virtual Machines that you are running

Dom0# xl list

2.3: Create a Guest from a prepared image

Note: We created CentOS 7 QCOW2 image which contains an installed guest OS, such
that we do not have to go through the full OS install process during the exercise. You can
find the image in /demo/master-images

A number of services (free and paid for) are available to download pre-prepared Xen
guest images for various operating systems.

To create a guest from it, copy the master image

Dom0# cd /demo

Dom0# cp master-images/centos7/c7-master.qcow2 images/c7-01.qcow2

Then make a copy of PV example

Dom0# cp master-images/centos7/c7-master.cfg images/c7-01.cfg

Generate a unique mac addresses for each outward connection of your VM

Dom0# /demo/scripts/make-mac.sh c7-01

5a:27:56:fa:05:0b

Dom0# /demo/scripts/make-mac.sh c7-01 xenbr1

5a:27:7f:22:1e:0b

Now cd into /demo/images and edit the config file (lines that need to change are
highlighted in bold)

name="c7-01"

type="pv"

bootloader="pygrub"

memory=512

maxmem = 1024

vcpus = 1

vif = ['mac=5a:27:56:fa:05:0b', 'bridge=xenbr1,mac=5a:27:7f:22:1e:0b']

disk = ['vdev=xvda,format=qcow2,target=/demo/images/c7-01.qcow2']

Then start the guest

Dom0# xl create c7-01.cfg -c

The -c option will attach a console to the guest after start. You will then see the bootloader
menu, in this case pygrub. Wait or select the default and do nothing:

The guest will boot and after a few seconds ask for the login prompt.

2.3.1: Connect to the guest, get the guest IP address, copy example workload

In the previous exercise we attached the console when we started the guest. Now we exit
the console by pressing Ctrl+] and reset the screen using clear.

Then connect to the guest using xl console

Dom0# xl console c7-01

and log in via root and xenroot. Note that this has the same effect as the -c option when we
created the guest. As in step 1.2.3, get the IP address and connect to the guest via ssh in a
second shell window. You may also want to exit the first console via Ctrl+].

Now we are going to copy an example workload from Dom0 to the guest

c7-01# scp root@192.168.56.101:/demo/mersienne-prime.py .

and log in via root and xenroot. As in step 1.2.3, get the IP address and connect to the guest
via ssh in a second shell window. You may also want to exit the first console via Ctrl+].

2.3.2: xl top

Within the c7-01 terminal, execute the just downloaded workload

c7-01# python mersienne-prime.py

and in the Dom0 terminal, execute

c7-01# xl top

Note: For this section to work you need to have set up VirtualBox with 2 CPUs. If you have
not done so earlier, please shut down your Xen VM, then the VirtualBox host and follow
the steps in section 1.2.1. Then restart the host. Note that when you shut down the host
(aka VirtualBox) your system will only start with Dom0.

Your terminal windows will lose the ssh connection: keep the Dom0 terminal window
open. Then ssh in again.

3: VCPUs, Memory, … (<15minutes)
As we have previously created a number of VM’s we will shut these down

Dom0# xl shutdown -a

Then perform

Dom0# xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 1024 4 r----- 27.8

We are now going to create a clone of the c7-01 VM (which already has our test app
mersienne-prime.py installed in it) by making copies of the qcow and cfg files in the
demo/images directory

Dom0# cp c7-01.cfg c7-02.cfg

Dom0# cp c7-01.qcow2 c7-02.qcow2

Generate a unique mac addresses for each outward connection of your VM

Dom0# /demo/scripts/make-mac.sh c7-02

5a:27:56:fa:05:ab

Dom0# /demo/scripts/make-mac.sh c7-02 xenbr1

5a:27:7f:22:1e:ab

Now edit the highlighted entries in c7-02.cfg

name="c7-02"

vcpu=2

vif = ['mac=5a:27:56:fa:05:ab', 'bridge=xenbr1,mac=5a:27:7f:22:1e:ab']

disk= ['vdev=xvda,format=qcow2,target=/demo/images/c7-02.qcow2']

Now start both VMs

Dom0# xl create c7-01.cfg

Now create the second guest, get the IP address and exit.

Dom0# xl create c7-02.cfg -c

3.1: VCPUs

To show the effect of VCPUs on performance, we have created the second guest with 2
VCPUs:

Dom0# xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 1024 2 r----- 69.9

c7-01 3 512 1 -b---- 11.1

c7-02 5 512 2 -b---- 16.0

We then create two more terminal windows, arrange them as in the picture below, using
ssh two log into the two VMs as per the picture.

Then we execute xl top in Dom0 and python mersienne-prime.py in terminal 1 & 2.

Note: Because the python script is a single process, the larger number of VCPUs does not
make a difference in performance.

Setup 1: Let’s see what happens when we do the following: exit the scripts in all VMs. Then
execute python mersienne-prime.py in terminal 1 & 2 & 4.

We execute python mersienne-prime.py in each terminal window: essentially, we are
doubling the compute load in c7-02.

Xentop shows the following:

To get the performance of each Mersienne Prime process look for
M<M-number>(<timestamp>): <number>) in the output!

Looking at xl top and the time stamps

• shows c7-01 getting 50% of the CPU time of c7-02

• each run of mersienne-prime.py takes a similar complete time

Setup 2: Now let’s try the same in terminal 1 & 2 & 3.

Looking at xl top and the time stamps

• shows c7-01 and c7-02 getting near 100% of CPU time

• each run of mersienne-prime.py on c7-01 is 50% of that of c7-02

3.1.1: CPU Pinning

Setup 3: Now we use pinning to pin the single VCPU of c7-01 and the two VCPUs of c7-02 to
CPU 1.

To do this we first list VCPU information

Dom0# xl vcpu-list

Name ID VCPU CPU State Time(s) Affinity (Hard / Soft)

Domain-0 0 0 0 -b- 41.4 all / all

Domain-0 0 1 1 r-- 39.3 all / all

c7-01 1 0 0 -b- 173.0 all / all

c7-02 2 0 0 -b- 165.1 all / all

c7-02 2 1 0 -b- 152.0 all / all

We then pin the CPUs: note that the command requires using the Domain ID (not the
domain name), which in the example above is 1 for c7-01 and 2 for c7-02

Dom0# xl vcpu-pin 1 0 1; xl vcpu-pin 2 0 1; xl vcpu-pin 2 1 1

We then make sure that Dom0 runs only on other VCPUs but 1

Dom0# xl vcpu-pin 0 0 0; xl vcpu-pin 0 1 0

We then make sure that Dom0 runs only on other VCPUs but 1, do another xl vcpu-list and
check if everything is fine run xl top in Dom0.

Dom0# xl vcpu-list

Name ID VCPU CPU State Time(s) Affinity (Hard / Soft)

Domain-0 0 0 0 -b- 41.4 0 / all

Domain-0 0 1 0 r-- 39.3 0 / all

c7-01 1 0 1 -b- 173.0 0 / all

c7-02 2 0 1 -b- 165.1 1 / all

c7-02 2 1 1 -b- 152.0 1 / all

We now execute python mersienne-prime.py in terminal 1 & 2 & 4.

Looking at xl top and the time stamps of each Mersienne Prime process in different
windows (timestamps are at M<M-number>(<timestamp>): <number>), you will see that:

• shows c7-01 getting 33% of CPU while c7-02 is getting 66%

• each run of mersienne-prime.py takes a similar complete time

This is what we would expect in this case.

Final Note: Using pinning and scheduling can be used to optimise system performance –
in particular when you have heavy workloads. In particular when you have very different
workloads running in an identical VM.

It is also useful when using NUMA architectures. For more information see

• https://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance

• https://wiki.xenproject.org/wiki/Category:NUMA

In addition, you can also change schedulers, as well as control the behaviour of individual
schedulers.

• See https://wiki.xenproject.org/wiki/Category:Scheduler

Cleanup: Now close terminals 2 – 4

3.2: Memory

Now we look at a number of commands and config options to manipulate the memory
available to a host: for c7-01 we the maximum amount of memory available is 1G.

Dom0# xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 1024 2 r----- 209.8

c7-01 1 512 1 -b---- 469.3

c7-02 2 512 1 -b---- 324.4

Perform free

c7-01# free

 total used free shared buff/cache available

Mem: 488484 90420 273072 4344 124992 359864

Swap: 419836 0 419836

Now we change the domains memory by executing

Dom0# xl mem-set c7-01 1024m

And check the memory again

c7-01# free

 total used free shared buff/cache available

Mem: 1012772 90528 797248 4344 124996 884060

Swap: 419836 0 419836

https://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance
https://wiki.xenproject.org/wiki/Category:NUMA

4: Save and Restore (<5minutes)
In this exercise we will use the save and restore functionality, which are building blocks of
live migration. We will simulate what happens during live migration on a single host. We will
do this with c7-01. To save some space on our very small exercise disk, we will shut-down
c7-01 and delete its disk (but keep the config file)

Dom0# xl shutdown c7-02

Dom0# rm -f c7-02.qcow2

Now we type in (without pressing return such that we get a heavy workload with interesting
output saved)

Dom0# xl save c7-01 c7-01.cpt <DO NOT YET PRESS ENTER>

and start the Mersienne script in c7-01. Note that this time we will

c7-01# python mersienne-prime.py 2> mersienne.log

Then very quickly press return in the Dom0 terminal

Dom0# xl save c7-01 c7-01.cpt

xc: info: Saving domain 3, type x86 PV

xc: Frames: 262144/262144 100%

xc: End of stream: 0/0 0%

The c7-01 terminal managed to compute numbers up to in my test run. You should see
something similar:

M15(0.3505): 10407932194664399081925240327364085538615262247266704805319112

350403608059673360298012239441732324184842421613954281007791383566248323464

908139906605677320762924129509389220345773183349661583550472959420547689811

211693677147548478866962501384438260291732348885311160828538416585028255604

666224831890918801847068222203140521026698435488732958028878050869736186900

714720710555703168729087

The c7-01 VM has been destroyed which you can check via xl list.

Now we restore c7-01 from the just created c7-01.cpt file, which contains the VMs memory
and CPU state.

Dom0# xl restore c7-01.cpt

Loading new save file c7-01.cpt (new xl fmt info 0x3/0x0/1123)

 Savefile contains xl domain config in JSON format

Parsing config from <saved>

xc: info: Found x86 PV domain from Xen 4.8

xc: info: Restoring domain

xc: info: Restore successful

xc: info: XenStore: mfn 0xc000f, dom 0, evt 1

xc: info: Console: mfn 0xc000e, dom 0, evt 2

Note that configuration file was embedded into the configuration file. Also note that the ssh
terminal connection to c7-01 should not yet have been lost and output should continue to

be directed to it from now. Of course, in a real-life scenario we would have migrated the
VM to another host, where this does not apply.

However, if you lost your terminal connection, first execute xl top: you should see that c7-
01 is running at 100%. Reconnect to c7-01 via ssh and perform a ps -aux |grep mersienne
and look at mersienne.log, which should have entries newer than M15(0.3505).

Final Note: when migrating a guest from one host to another in essence the following
steps are performed:

• Host 1: Save

• Host 2: Restore

• Both hosts see the same filesystem and thus have access to disk images,
checkpoint files as well as config files (if needed)

The xl migrate command ensures coordinates the execution of save and restore on both
hosts. Also, some commercial solutions based on Xen, implement additional functionality
that do not require a shared host filesystem.

Cleanup: Delete the just created c7-01.cpt file, such that we have enough disk space for the
next exercise.

5: Creating Guests from Scratch (<10 minutes)

Note: This exercise will require a fast and reliable internet connection as the Debian
install will want to fetch packages from the internet. With reasonable bandwidth the
install will take 10-20 minutes. To be able to focus on the key steps, we will

• follow the exercise up to the installer

• then we will get and use the file $XenExercise/IMG/d8-01.img

This ensures that we can focus on the key steps, rather than the install.

First ,we create an empty disk via

dd if=/dev/zero of=/demo/images/d8-01.img bs=1M count=1500

As before we create unique mac addresses:

/demo/scripts/make-mac.sh d8-01

5a:27:48:e0:4e:fb

/demo/scripts/make-mac.sh d8-01 xenbr1

5a:27:74:08:46:fb

Now we copy and edit the config file and change the portions marked in red: in many cases,
you simply have to uncomment the relevant portions of the file

cp /demo/master-images/debian8/debian.cfg d8-01.cfg

vi d8-01.cfg

kernel = "/demo/master-images/debian8/vmlinuz"

ramdisk = "/demo/master-images/debian8/initrd.gz"

…

extra = "debian-installer/exit/always_halt=true -- quiet console=hvc0"

…

memory = 512

…

name = "d8-01"

…

vcpus = 1

…

vif = ['mac=5a:27:48:e0:4e:fb','bridge=xenbr1,mac=5a:27:74:08:46:fb']

…

disk= ['vdev=xvda,format=raw,target=/demo/images/d8-01.img']

We then create the guest, attaching the console

xl create d8-01.cfg -c

At this point you will see:

Instead of going through the install, we abort it and shut down the VM in a Dom0 terminal
by executing

Dom0# xl shutdown d8-01

In the Laptop terminal shell go to the $XenExercise/IMG directory:

$ cd ~/Desktop/XenExercise/IMG

$ scp ./d8-01.img root@192.168.56.101:/demo/images

This provides the Debian image immediately after the install

Note: the install was performed with default settings, with the exception of

Primary internet adaptor: eth0

Hostname: d8-01

Password: xenroot

User: yourname

Password: yourpw

Also note that – although the default – we want to

Install Grub as bootloader: yes, /dev/xvda

In the Dom0 terminal we have to change the guest’s config file and change the portions
marked in red: in many cases, you simply have to comment out the relevant portions of the
file. The reason for this is that we want to boot from the disk (now as the disk image has a
Debian install in it), and not from the network

Dom0# vi d8-01.cfg

…

#kernel = "/demo/master-images/debian8/vmlinuz"

#ramdisk = "/demo/master-images/debian8/initrd.gz"

…

#extra = "debian-installer/exit/always_halt=true – quiet

…

#==

TO BOOT INSTALLED SYSTEM

Comment all of the above installation options and uncomment the

below instead

#==

bootloader="pygrub"

Now start the guest in the Dom0 terminal:

Dom0# xl create d8-01.cfg -c

and log in as root.

The Debian installer has not set up eth1, nor does it allow ssh’ing into the guest without
the use of ssh keys. To fix this we need to edit /etc/network/interfaces and add the
portions marked in red:

Dom0# vi /etc/network/interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

allow-hotplug eth0

iface eth0 inet dhcp

The secondary network interface

allow-hotplug eth1

iface eth1 inet dhcp

and perform:

Dom0# /etc/init.d/networking restart

Now we need to edit /etc/ssh/sshd_config and modify the portions marked in red:

Dom0# vi /etc/ssh/sshd_config

…

Authentication:

LoginGraceTime 120

PermitRootLogin yes

StrictModes yes

…

and perform:

Dom0# /etc/init.d/ssh restart

Now we get the IP address in the usual way and write it down, leave the terminal via Ctrl+]
and re-attach from a new terminal window via ssh.

	1: Setting up Xen (<10minutes)
	1.1: Install and configure Virtual Box (<2 minutes)
	1.2: Import Virtual Box Image
	1.2.1: Number of CPUs
	1.2.2: Keyboard Settings
	Make sure you have your preferred keyboard set up: the default should be us: you can use

	to change this permanently.
	1.2.3: Get your hosts IP address and open Terminal
	1.2.4: Demo Directory

	1.3: Installing Xen
	2: Verifying the Xen Install & Start a Guest (<10minutes)
	2.1: Exploring the Install Locations and Services
	2.2: Exploring the System
	2.3: Create a Guest from a prepared image
	2.3.1: Connect to the guest, get the guest IP address, copy example workload
	2.3.2: xl top

	3: VCPUs, Memory, … (<15minutes)
	3.1: VCPUs
	3.1.1: CPU Pinning

	3.2: Memory
	4: Save and Restore (<5minutes)
	5: Creating Guests from Scratch (<10 minutes)
	and log in as root.
	The Debian installer has not set up eth1, nor does it allow ssh’ing into the guest without the use of ssh keys. To fix this we need to edit /etc/network/interfaces and add the portions marked in red:
	and perform:
	Now we need to edit /etc/ssh/sshd_config and modify the portions marked in red:
	and perform:

