

Lars Kurth
Community Manger, Xen Project

Chairman, Xen Project Advisory Board

Director, Open Source, Citrix

George Dunlap
Committer, Xen Project

Senior Software Engineer, Citrix

Contributors
Andrew Cooper. Committer, Xen Project ◉ Roger Pau Monné, Maintainer, Xen Project ◉

Wei Liu, Committer, Xen Project

lars_kurth gwd

Virtualization Concepts

Overview of Xen’s Basic concepts and use-cases

– With exercises built in

How to get help from the community

A peek view into Xen’s more advanced features

Important Note: Usually, you will use Xen indirectly as part of a
commercial product or part of a bigger SW stack, or have scripts to
automate much of what is covered in this session. However, by following
this session you will learn how Xen and virtualization works under the
hood.

Versatile Virtualization Platform
Designed to be a component in a SW stack
Ease of use for end-users not a design goal

Xen Hypervisor = “Engine”
Taken by integrators to build a product, service, …
Analogy: Xen integrators build a “Car”

Examples at the end

Xen Project
Development community with several sub projects
that develop technologies related to Xen

– Hypervisor

– PV Drivers

– Unikernel related projects: MirageOS, Unikraft

Host

Operating System, e.g.
*BSD, Linux, Windows, …

Kernel
Processes, Threads, Interrupts, …

Native Drivers

BIOS

Applications

CPU & Memory Devices

Hypervisor
separates a computer’s operating system and applications from the

underlying physical hardware ➜ Virtual Machine

Creates an illusion that the Virtual Machine owns a set of CPUs and

Memory memory within the host

This is done via CPU virtualization, where the Hypervisor

• Temporally manages CPU resources via a scheduler and takes control of

interrupts and timers

• Spatially manages memory resources and ensures that a VM can only

access the memory it is supposed to

I/O Virtualization
Multiplexes I/O devices across different virtual machines such that they can

be shared across different VMs.

• There are a number of different ways of how to do this

Assign devices to specific Virtual Machines ➜ Passthrough

Host

Type 1 HV

VM1 VM2 VM3

ESX Server

VM0

Host

Type 1 HV

VM1 VM2

Xen

Hyper-V

Host

OS

KVM

VirtualBox

VM1 VM2 VM3

Kernel

Type 2 HV

Introduction of key concepts

VM0 (or Dom0)

Dom0 Kernel

Native Driver

System Services

Host
CPUsMemoryI/O

VM2 (DomU2)
PV mode

Guest OS

Applications

Scheduler MMU Timers Interrupts

Dom0
Privileged VM that interacts

with the hypervisor providing

system services such as

XS=XenStore/XenBus

(Settings), TS=Toolstack

(UI), DE=Device Emulation

(QEMU) in a standard

setup.

It also is the source of physical

and virtual drivers (backends) and

thus native hardware support

for a Xen system.

VM1 (DomU1)
HVM mode

Guest OS

Applications
XS TSDE

VM0 (or Dom0)

Toolstack
- xl command
- Domain config
files

System Services

Dom0 Kernel

xl toolstack
◦ CLI
◦ Domain Config

xl is the built-in toolstack for Xen

– Virsh / virt-manager can also be used

– XAPI is the toolstack for XenServer and XCP-ng

xl can be used
https://xenbits.xen.org/docs/unstable/man/xl.1.html

– normally run as root in Dom0

– to create, pause, and shutdown domains

– to list current domains, enable or pin VCPUs, and attach
or detach virtual block devices

Domain configuration files (/etc/xen/<domain>.cfg)
https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html

– describe per domain/VM configuration in Dom0 filesystem

https://xenbits.xen.org/docs/unstable/man/xl.1.html
https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html

VM0 (or Dom0)

Dom0 Kernel

Native Driver

System Services

Host
CPUsMemoryI/O

VM2 (DomU2)
Any mode with

PV Drivers present

Guest OS
Linux, *BSD: drivers
are shipped with OS

Applications

Scheduler MMU Timers Interrupts

VM1 (DomU1)
HVM mode only

no PV Drivers

Guest OS

Applications

*Back Driver *Front Driver

Native Driver

Device Emulation

(QEMU)

VM3 (DomU3)
HVM with Windows

PV Drivers

Windows
Drivers for many devices
(but not all) are available at
https://xenproject.org/
downloads/windows-
pv-drivers.html

Applications

*Front Driver

PV Drivers
Originally developed for disk and network I/O
But there are a host of PV drivers for DRM, Touchscreen, Audio, … for
non-server use of Xen

Device Emulation …
is normally only used during system bootstrap or installation
and for low-bandwidth devices

A few PV backends (e.g. support for QCOW2 images) can also run in
userspace within QEMU

Xen

Dom0

Dom0 Kernel

native network driver

Host
NIC

DomUX
Any mode with

PV Drivers present

Guest OS Kernel

netback driver netfront driver

ethN

vifX.DX ethDX

With xl, the host networking configuration is
not configured by the toolstack

The host administrator needs to setup an
appropriate network configuration in
Dom0 using native Linux/BSD tools using a
number of different networking stylesAdmin

vifX+1.DX+1

●●●

Xen follows FHS: www.pathname.com/fhs/pub/fhs-2.3.html

/etc/xen : scripts, config file examples, your config files

/var/log/xen : log files

/usr/lib64/xen/bin : xen binaries
/usr/lib64/xen/boot : xen firmware and boot related binaries

/boot : boot and install images

http://www.pathname.com/fhs/pub/fhs-2.3.html

Section 1 of session guide

Duration VB Install : <2 minutes
Duration rest of Install : <6 minutes

Your Laptop

Your OS

Kernel

VirtualBox

VirtualBox VM

VirtualBox VM

CentOS 7

VirtualBox VM

Your Laptop

Your OS

Kernel

VirtualBox

VirtualBox VM

Xen 4.8 from CentOS 7

Dom0

CentOS 7

DomUX
PV Guests only

Applications

CentOS 7

Xen takes over the entire host
Not really what you want after a training session

People have different environments
This makes it hard to run an effective training session

Can show almost everything
Xen PV guests can run fairly fast within any other Hypervisor
To use HVM or PVH you will need a dedicated host

Why Xen 4.8 from CentOS 7?
Has a lot of functionality up to Xen 4.10 backported
For other distros, you will need the equivalent of Xen 4.10

Install and configure Virtual Box
See section 1.1 of the session guide
Hopefully you have already done this

Import CentOS 7 Virtual Box Image
See section 1.2 of the session guide

Install Xen in Virtual Box VM
See section 1.3 of the session guide

Xen

Dom0

Dom0 Kernel

native network driver

Host
NIC

DomUX
Any mode with

PV Drivers present

Guest OS Kernel

netback driver netfront driver

ethN

vifX.DX ethDX

With xl, the host networking configuration is
not configured by the toolstack

The host administrator needs to setup an
appropriate network configuration in
Dom0 using native Linux/BSD tools using
one of the following networking styles:

– Bridging (most common)

– Open vSwitch

– Routing

– NAT

Documentation @ wiki.xenproject.org/wiki/

– Network_Configuration_Examples_(Xen_4.1%2B)
Dom0: Examples for enabling different networking
styles in various distros

– Xen_Networking
Xen configuration examples for different
networking styles

vif=[…]

Admin

vifX+1.DX+1

●●●

https://wiki.xenproject.org/wiki/Network_Configuration_Examples_(Xen_4.1+)
https://wiki.xenproject.org/wiki/Xen_Networking

Xen

Dom0

Dom0 Kernel

native network driver

Host
NIC

DomU4
Any mode with

PV Drivers present

Guest OS Kernel

netback driver netfront driver

eth0

vif4.0 eth0

Step 1: install bridging software packages, if
not present ✓

Step 2: set up a network bridge (xenbr0) in
Dom0 ✓

Step 3: connect DomU’s to network bridge

DomU4

vif = ['mac=…, bridge=xenbr0’]

DomU5

vif = ['mac=… ’] # xenbr0 is the default

…

Note on MAC addresses:
MAC addresses will be assigned
automatically by xl, unless specified
➜ may change on host reboot

vif5.0

●●●

xenbr0

Template designed by PresentationGO.com

HVM
Requires Intel VT-x or

AMD SVM

2005/6

HVM

Optimizations
Changes to HVM: instead of Device

Emulation, use HW acceleration when

available (e.g. Local APIC and Posted

Interrupts).

On PV capable hosts and guests use PV

extension where faster, including on

Windows (marketing term: PVHVM)

2010

to 16

PV
Requires no HW support

But requires PV support in

guest operating systems.

From 2011 (Linux 3.0) linux

supports Xen PV out of the box.

2003

PVH

(lightweight HVM)
Re-architecting of HVM to avoid use of QEMU.

Goals: Windows guests without QEMU, reduce

code size, increase security, enable PVH

Dom0.

Requires PVH support in guest OSes.

Backwards compatibility mode for PV ➜

capability to build an HVM only version of Xen

2017

to now

y

2013

Xen/Arm
Added Arm32 and later 64 support

Re-think the historical split between

PV / HVM modes

➜ one virtualization mode on Arm

Virtualization technique called ring de-privileging developed in the late 90s.

Designed by:

– XenoServer research project at Cambridge University

– Intel

– Microsoft labs

x86 instructions behave differently in kernel or user mode: options for
virtualization were full software emulation or binary translation.

– Design a new interface for virtualization

– Allow guests to collaborate in virtualization

– Provide new interfaces for virtualized guests that allow to reduce the overhead of
virtualization

The result of this work is what we know today as paravirtualization, with Linux,
*BSD and Windows implementing some or all PV interfaces.

With the introduction of hardware virtualization extensions Xen is able to
run unmodified guests

– This requires emulated devices, which are handled by Qemu

– Makes use of nested page tables when available

– Allows to use PV interfaces if guest has support for them

Over time, HVM guests have been changed to automatically…

– use additional Hardware Acceleration support, such as Local APIC and Posted
Interrupts, if available

– make use of guest PV interfaces where they are faster (this capability has been
dubbed PVHVM or PV-on-HVM for marketing reasons)

Combine the best of PV and HVM mode

– Next-generation paravirtualization mode

– Takes advantage of hardware virtualization support

– No need for emulated BIOS or emulated devices

– Lower performance overhead than PV

– Lower memory overhead than HVM

– More secure than either PV or HVM mode

More Information:

– https://www.slideshare.net/xen_com_mgr/lcc18-xen-project-after-15-years-
whats-next-george-dunlap-citrix

– https://www.youtube.com/watch?v=10KsJ1UxUMY

https://www.slideshare.net/xen_com_mgr/lcc18-xen-project-after-15-years-whats-next-george-dunlap-citrix
https://www.youtube.com/watch?v=10KsJ1UxUMY

PV mode: type=“pv”

Primarily of use for legacy HW and legacy guest images
And in special scenarios, e.g. special guest types, special workloads (e.g. Unikernels),
running Xen within another hypervisor without using nested virtualization, as container
host, guest limits (more PV guests than HVM guests), …

HVM mode: type=“hvm”

Typically the best performing option on for Linux, Windows, *BSDs
Adapts to hardware and software environment for performance
Guests look exactly like a “PC or Server”

PVH mode: type=”pvh”

Lightweight version of HVM ➜ promise of better performance and security
Needs Linux ≥ 4.15 and FreeBSD ≥ 12 (later in 2018)
Guest looks like a simpler abstraction of a “PC or Server”
Relatively new (Xen 4.10)

disk = ['format=…, Disk format, e.g. raw, qcow, qcow2, vhd, qed
vdev=…, Virtual device name as seen by the guest

See xen-vbd-interface(7) man page
access=…, Read write access: r, w
devtype=cdrom, If you want to use an ISO
target=…, ’] Block device or image file path (must be last)

DomUx

disk = […]

Local Host
Use LVM to carve up your

physical disk into multiple

block devices

Store guest disk images as

files on a local filesystem

Remote Storage
For example RBD, NBD, NFS,

DRDB or iSCSI

Before installing a Dom0, consider where you are intending to store the guest
OS disk images ➜ you have to manage the disk space available and partition
the disk accordingly using LVM volumes

For the exercises we will store these in the root filesystem of the Dom0 guest
OS

A remote storage set-up is the normal set-up when Xen is used at scale,
either on premise or in a cloud computing set-up.

http://xenbits.xen.org/docs/unstable/
http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

Dom0

Dom0 OS

DomUX

Guest OS

Applications

Xen Host Remote Host

Text Console (all guest types)
xl console or xl create -c …

See wiki.xenproject.org/wiki/Xen_FAQ_Console

ssh
All guest types

VNC Viewer
All guest types, but PV/PVH and HVM use

different config and implementation mechanisms

https://wiki.xenproject.org/wiki/Xen_FAQ_Console

VM control

xl create [configfile] [OPTIONS] | shutdown [OPTIONS] -a|domain-id
destroy [OPTIONS] domain-id

xl pause domain-id | unpause domain-id

Information

xl info [OPTIONS]
xl list [OPTIONS] [domain-id ...]
xl top
xl uptime

Debug

xl dmesg [OPTIONS]
xl -v … logs from /var/log/xen/xl-${DOMNAME}.log, /var/log/xen/qemu-dm-
${DOMNAME}.log, …

Section 2 of session guide

Duration: <10 minutes

0 1 2 3

0 1 2 3

4 5 6 7

CPUs/Host

vCPUs/Xen
Created on demand based on user supplied information

Dom0

vcpus=2 0 1

DomU1

vcpus=1 2

DomU2

vcpus=5 3 7●●●

Scheduler

Schedules

vCPUs on

physical CPUs

What a Guest sees

DomUx

vcpus=Nx

cpus=CPULISTx

CPUs/Host

0 3●●●

0 n●●●

Scheduler

DomUx+1

vcpus=Nx+1

cpus_soft=CPULISTx+1

Pinning or Hard-affinity: tell

scheduler on which CPUs my

vCPUs must run

Soft-affinity: tell scheduler

which CPUs it should prefer to

schedule my vCPUs on vCPUs/Xen

Related xl commands:
vcpu-list [domain-id]

vcpu-pin [-f|--force] domain-id vcpu cpus hard cpus soft

Also see CPUPOOLS

For each VM, set maxmem in the domain config file

VM0

(or Dom0)

“Unallocated”

memory managed by Xen

A balloon driver in each VM (including

Dom0) is used to give back memory to

Xen to be used by other VMs.

VM0

(or Dom0)

VM1

(DomU1)

VM2

(DomU2)

VM3

(DomU3)

Comes with drivers in Linux, *BSD. Windows drivers at

xenproject.org/downloads/windows-pv-drivers.html

https://xenproject.org/downloads/windows-pv-drivers.html

Important Notes:

From within the guest, the balloon is reported as used memory
If you have a guest that started at 2GiB and you ballooned down to 1GiB, it will
look like there's a memory hog driver that's grabbing 1GiB of RAM.

OS’es have to use memory to track memory even if it's ballooned out
Setting maxmem=16GiB memory=1GiB you'll have a lot less free memory than
maxmem=2GiB memory=1GiB

Config file xl … domain-id mem

maxmem=MBYTES

memory=MBYTES mem-set … sets the balloon size

Section 3 of session guide

Duration: <15 minutes

Save/Restore are building blocks that enable
moving VMs from one host to another without
downtime

Maintenance, Replacing Hosts, Building Block
for High Availability/Disaster Recovery, …

xl shutdown|create domain-id

DomU

Filesystem(s)

DomU

Guest OS

Applications

disk(s)

When shutdown, copying guest disks and

config files allows you to clone a VM (or

move them to another host)

xl save [OPTIONS] domain-id checkpointfile [configfile]

Xen
DomU’s CPU &

memory state

DomU

Guest OS

Applications

DomU.cfg

xl save

Dom0 Filesystem

$location/DomU-snapshot/

checkpointfile +

configfile

xl restore [OPTIONS] [configfile] checkpointfile

Xen
DomU’s CPU &

memory state

DomU

Guest OS

Applications

DomU.cfg

Dom0 Filesystem

$location/DomU-snapshot/

xl restore
checkpointfile +

configfile

Section 4 of session guide

Duration: <5 minutes

xl migrate [OPTIONS] domain-id host

Migrate a VM from one host to another (uses save/restore as building
blocks).

For this to work, you need

– Shared network storage between the two hosts

– Identical host network setups, ssh keys for the root users, …

– Compatible host models
A VM can only be migrated safely from one host to another if both hosts offer the set of CPU
features which the VM expects. If this is not the case, CPU features may appear or disappear as
the VM is migrated, causing it to crash.

– Compatible Xen versions
A VM build on an older Xen version can be migrated to a newer Xen version, but not vice versa
Restricted by the Xen compatibility policy

Linux

Firmware

Bootloader: GRUB2

Kernel (with initial RAM disk: initrd)

●●●

For reference:

Linux: more information see https://opensource.com/article/17/2/linux-boot-and-startup

Other operating systems follow a similar pattern

They diverge after the Bootloader step

Filesystem

Installable Media

E.g. OS ISO Image

/boot

Install

https://opensource.com/article/17/2/linux-boot-and-startup

HVM DomU

Dom0 Filesystem DomU Filesystem

/usr/lib64/xen/bin/firmware

Firmware

hvmloader
hvmloader is copied into guest memory by Xen

(under the control of the Toolstack). Hvmloader

sets up all necessary information for the Device

Emulator which emulates a HW environment

that appears exactly like a physical machine.

The correct firmware is automatically loaded as a

binary blob and copied into guest memory based

on config settings, but can be overridden via the

firmware config file option.

Toolstack

Bootloader: GRUB2

Kernel (with initial RAM disk: initrd)

●●●

/boot

Dom0 Filesystem

Any DomU

kernel=“PATHNAME”

ramdisk= “”PATHNAME”

Kernel image: ~/images/../vmlinuz

Initrd image: ~/images/../initrd.gz

Kernel (with initial RAM disk: initrd)

●●●

Toolstack

Works for all guest types

Non standard way of installing/booting

Need to be a host admins to configure

(need access to Dom0).

Useful for netboot, see

wiki.xenproject.org/wiki/Xenpvnetboot

https://wiki.xenproject.org/wiki/Xenpvnetboot

Dom0 Filesystem

PV DomU

firmware="pvgrub32|pvgrub64"

Kernel image: ~/images/../vmlinuz

Initrd image: ~/images/../initrd.gz

Works for PV guest types

Non standard way of installing/booting,

with a standard bootloader UI.

Allows host admins to configure what

guests and kernel versions a guest admin

can install.

Also used for PXE booting

Requires a PV capable GRUB2 (you may

need to build from source or install an

appropriate distro package)

Also see

wiki.xenproject.org/wiki/PvGrub2

/usr/lib64/xen/bin/pvgrub

GRUB2 (with built-in PV support)

Kernel (with initial RAM disk: initrd)

●●●

Toolstack

https://wiki.xenproject.org/wiki/PvGrub2

PV DomU

bootloader=“pygrub”

Kernel (with initial RAM disk: initrd)

●●●

Executes pygrub (same UI as GRUB)

Dom0 Filesystem DomU Filesystem

/boot/usr/lib64/xen/bin/pygrub

Toolstack

The closest to a standard OS install

workflow (although different behind the

scenes)

See

wiki.xenproject.org/wiki/PyGrub

https://wiki.xenproject.org/wiki/PyGrub

In most real-life scenarios you will use HVM guests
Guest install workflow as on a native system
That does not scale across a large number of hosts

In Xen based products install complexity is usually hidden
Via templates, pre-baked guest images and other means

Exercises: will use PV with PyGrub
Using a prepared VirtualBox image that contains Dom0 and Guest OS
Avoid downloads of guest distros

Guest name and type, Memory Size and VCPUs

name = “myguestname”

type = “TYPE”

memory = MMM

vcpus = VVV

Boot related information, unless type='hvm’ … one of the following

Netboot/Direct Kernel Boot/PV GRUB

kernel = "/…/vmlinuz”

ramdisk = "/…/initrd.gz”

extra = …

To use PVGrub (if installed)

firmware="pvgrub32|pvgrub64

Boot from disk

bootloader=“pygrub”

Disk specifications

disk = [' ']

Network specifications

vif = [' ']

Section 5 of session guide

Duration: <10 minutes

Dom0 Filesystem

Kernel image: ~/images/../vmlinuz

Initrd image: ~/images/../initrd.gz

DomU Filesystem

/boot

Step 1: Get vmlinuz & initrd.gz
In this case from Debian

Step 2: Create DomU filesystem

Step 2: Set up config for Direct
Kernel Boot ◉ Start guest

Step 3: Perform Install
Fix any loose ends that
the installer didn’t handle

Step 4: Change config to use
pygrub ◉ Shut down
and restart guest

Channels
IRC@freenode: #xen … xenproject.org/help/irc.html
Lists: xen-users@lists.xenproject.org … lists.xenproject.org
FAQs: wiki.xenproject.org/wiki/Category:FAQ

Preparing information
Xen: Log files (/etc/log/xen), xl dmesg output, xl info output
Dom0: OS Info, System Configs (networking, …), dmesg output
DomU: OS Info, xl configuration files

Netiquette
wiki.xenproject.org/wiki/Xen_Users_Netiquette
wiki.xenproject.org/wiki/Reporting_Bugs_against_Xen_Project

https://xenproject.org/help/irc.html
https://lists.xenproject.org/
https://wiki.xenproject.org/wiki/Category:FAQ
https://wiki.xenproject.org/wiki/Xen_Users_Netiquette
https://wiki.xenproject.org/wiki/Reporting_Bugs_against_Xen_Project

Live Patching, Virtual Machine Introspection and
Vulnerability Management
A Primer and Practical Guide – Lars Kurth
Presentation: goo.gl/MLMu5b
Demo Videos: goo.gl/wuQLPh & goo.gl/dEGfDS

Virtual Machine Introspection
@ 31c3 - Tamas K Lengyel, Thomas Kittel
Presentation: goo.gl/khq92r
Video: www.youtube.com/watch?v=MhEIyzfLa6U

https://goo.gl/MLMu5b
https://goo.gl/wuQLPh
https://goo.gl/dEGfDS
https://goo.gl/khq92r
https://www.youtube.com/watch?v=MhEIyzfLa6U

Xen on x86, 15 years later
Recent development, future direction - George Dunlap
Presentation: goo.gl/8Djm7w
Video: www.youtube.com/watch?v=10KsJ1UxUMY

Speculation and response
Spectre, Meltdown, XPTI, and Panopticon - George Dunlap
Presentation: goo.gl/xnoj8J
Video: www.youtube.com/watch?v=36jta61XTw8

https://goo.gl/8Djm7w
http://www.youtube.com/watch?v=10KsJ1UxUMY
https://goo.gl/xnoj8J
https://www.youtube.com/watch?v=36jta61XTw8

Securing embedded Systems using Virtualization
@ FOSDEM18 - Lars Kurth
Presentation: goo.gl/dEGfDS
Video: goo.gl/V6DA6P

Xen and the Art of Embedded Systems Virtualization
@ ELC18 - Stefano Stabellini
Presentation: goo.gl/WdbtzN
Video: www.youtube.com/watch?v=GYb-Qn3KAUM

https://goo.gl/dEGfDS
https://goo.gl/V6DA6P
https://goo.gl/WdbtzN
http://www.youtube.com/watch?v=GYb-Qn3KAUM

Unleashing the Power of Unikernels with Unikraft
@ XPDDS18 – Florian Schmidt
Presentation: goo.gl/ky7Jr9
Video: www.youtube.com/watch?v=OYgTWhYjD0o

Unikraft: An easy way of crafting Unikernels on Arm
@ XPDDS18 – Kaly Xin
Presentation: goo.gl/162aAq
Video: www.youtube.com/watch?v=_ocRiTtYdfQ

https://goo.gl/ky7Jr9
http://www.youtube.com/watch?v=OYgTWhYjD0o
https://goo.gl/162aAq
https://www.youtube.com/watch?v=_ocRiTtYdfQ

lars.kurth@xenproject.org
george.dunlap@citrix.com

Picture by Lars Kurth

