/****************************************************************************** * arch-arm.h * * Guest OS interface to ARM Xen. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Copyright 2011 (C) Citrix Systems */ #ifndef __XEN_PUBLIC_ARCH_ARM_H__ #define __XEN_PUBLIC_ARCH_ARM_H__ /* * `incontents 50 arm_abi Hypercall Calling Convention * * A hypercall is issued using the ARM HVC instruction. * * A hypercall can take up to 5 arguments. These are passed in * registers, the first argument in x0/r0 (for arm64/arm32 guests * respectively irrespective of whether the underlying hypervisor is * 32- or 64-bit), the second argument in x1/r1, the third in x2/r2, * the forth in x3/r3 and the fifth in x4/r4. * * The hypercall number is passed in r12 (arm) or x16 (arm64). In both * cases the relevant ARM procedure calling convention specifies this * is an inter-procedure-call scratch register (e.g. for use in linker * stubs). This use does not conflict with use during a hypercall. * * The HVC ISS must contain a Xen specific TAG: XEN_HYPERCALL_TAG. * * The return value is in x0/r0. * * The hypercall will clobber x16/r12 and the argument registers used * by that hypercall (except r0 which is the return value) i.e. in * addition to x16/r12 a 2 argument hypercall will clobber x1/r1 and a * 4 argument hypercall will clobber x1/r1, x2/r2 and x3/r3. * * Parameter structs passed to hypercalls are laid out according to * the Procedure Call Standard for the ARM Architecture (AAPCS, AKA * EABI) and Procedure Call Standard for the ARM 64-bit Architecture * (AAPCS64). Where there is a conflict the 64-bit standard should be * used regardless of guest type. Structures which are passed as * hypercall arguments are always little endian. * * All memory which is shared with other entities in the system * (including the hypervisor and other guests) must reside in memory * which is mapped as Normal Inner-cacheable. This applies to: * - hypercall arguments passed via a pointer to guest memory. * - memory shared via the grant table mechanism (including PV I/O * rings etc). * - memory shared with the hypervisor (struct shared_info, struct * vcpu_info, the grant table, etc). * * Any Inner cache allocation strategy (Write-Back, Write-Through etc) * is acceptable. There is no restriction on the Outer-cacheability. */ /* * `incontents 55 arm_hcall Supported Hypercalls * * Xen on ARM makes extensive use of hardware facilities and therefore * only a subset of the potential hypercalls are required. * * Since ARM uses second stage paging any machine/physical addresses * passed to hypercalls are Guest Physical Addresses (Intermediate * Physical Addresses) unless otherwise noted. * * The following hypercalls (and sub operations) are supported on the * ARM platform. Other hypercalls should be considered * unavailable/unsupported. * * HYPERVISOR_memory_op * All generic sub-operations * * HYPERVISOR_domctl * All generic sub-operations, with the exception of: * * XEN_DOMCTL_irq_permission (not yet implemented) * * HYPERVISOR_sched_op * All generic sub-operations, with the exception of: * * SCHEDOP_block -- prefer wfi hardware instruction * * HYPERVISOR_console_io * All generic sub-operations * * HYPERVISOR_xen_version * All generic sub-operations * * HYPERVISOR_event_channel_op * All generic sub-operations * * HYPERVISOR_physdev_op * No sub-operations are currenty supported * * HYPERVISOR_sysctl * All generic sub-operations, with the exception of: * * XEN_SYSCTL_page_offline_op * * XEN_SYSCTL_get_pmstat * * XEN_SYSCTL_pm_op * * HYPERVISOR_hvm_op * Exactly these sub-operations are supported: * * HVMOP_set_param * * HVMOP_get_param * * HYPERVISOR_grant_table_op * All generic sub-operations * * HYPERVISOR_vcpu_op * Exactly these sub-operations are supported: * * VCPUOP_register_vcpu_info * * VCPUOP_register_runstate_memory_area * * * Other notes on the ARM ABI: * * - struct start_info is not exported to ARM guests. * * - struct shared_info is mapped by ARM guests using the * HYPERVISOR_memory_op sub-op XENMEM_add_to_physmap, passing * XENMAPSPACE_shared_info as space parameter. * * - All the per-cpu struct vcpu_info are mapped by ARM guests using the * HYPERVISOR_vcpu_op sub-op VCPUOP_register_vcpu_info, including cpu0 * struct vcpu_info. * * - The grant table is mapped using the HYPERVISOR_memory_op sub-op * XENMEM_add_to_physmap, passing XENMAPSPACE_grant_table as space * parameter. The memory range specified under the Xen compatible * hypervisor node on device tree can be used as target gpfn for the * mapping. * * - Xenstore is initialized by using the two hvm_params * HVM_PARAM_STORE_PFN and HVM_PARAM_STORE_EVTCHN. They can be read * with the HYPERVISOR_hvm_op sub-op HVMOP_get_param. * * - The paravirtualized console is initialized by using the two * hvm_params HVM_PARAM_CONSOLE_PFN and HVM_PARAM_CONSOLE_EVTCHN. They * can be read with the HYPERVISOR_hvm_op sub-op HVMOP_get_param. * * - Event channel notifications are delivered using the percpu GIC * interrupt specified under the Xen compatible hypervisor node on * device tree. * * - The device tree Xen compatible node is fully described under Linux * at Documentation/devicetree/bindings/arm/xen.txt. */ #define XEN_HYPERCALL_TAG 0XEA1 #define int64_aligned_t int64_t __attribute__((aligned(8))) #define uint64_aligned_t uint64_t __attribute__((aligned(8))) #ifndef __ASSEMBLY__ #define ___DEFINE_XEN_GUEST_HANDLE(name, type) \ typedef union { type *p; unsigned long q; } \ __guest_handle_ ## name; \ typedef union { type *p; uint64_aligned_t q; } \ __guest_handle_64_ ## name; /* * XEN_GUEST_HANDLE represents a guest pointer, when passed as a field * in a struct in memory. On ARM is always 8 bytes sizes and 8 bytes * aligned. * XEN_GUEST_HANDLE_PARAM represents a guest pointer, when passed as an * hypercall argument. It is 4 bytes on aarch32 and 8 bytes on aarch64. */ #define __DEFINE_XEN_GUEST_HANDLE(name, type) \ ___DEFINE_XEN_GUEST_HANDLE(name, type); \ ___DEFINE_XEN_GUEST_HANDLE(const_##name, const type) #define DEFINE_XEN_GUEST_HANDLE(name) __DEFINE_XEN_GUEST_HANDLE(name, name) #define __XEN_GUEST_HANDLE(name) __guest_handle_64_ ## name #define XEN_GUEST_HANDLE(name) __XEN_GUEST_HANDLE(name) #define XEN_GUEST_HANDLE_PARAM(name) __guest_handle_ ## name #define set_xen_guest_handle_raw(hnd, val) \ do { \ typeof(&(hnd)) _sxghr_tmp = &(hnd); \ _sxghr_tmp->q = 0; \ _sxghr_tmp->p = val; \ } while ( 0 ) #ifdef __XEN_TOOLS__ #define get_xen_guest_handle(val, hnd) do { val = (hnd).p; } while (0) #endif #define set_xen_guest_handle(hnd, val) set_xen_guest_handle_raw(hnd, val) #if defined(__GNUC__) && !defined(__STRICT_ANSI__) /* Anonymous union includes both 32- and 64-bit names (e.g., r0/x0). */ # define __DECL_REG(n64, n32) union { \ uint64_t n64; \ uint32_t n32; \ } #else /* Non-gcc sources must always use the proper 64-bit name (e.g., x0). */ #define __DECL_REG(n64, n32) uint64_t n64 #endif struct vcpu_guest_core_regs { /* Aarch64 Aarch32 */ __DECL_REG(x0, r0_usr); __DECL_REG(x1, r1_usr); __DECL_REG(x2, r2_usr); __DECL_REG(x3, r3_usr); __DECL_REG(x4, r4_usr); __DECL_REG(x5, r5_usr); __DECL_REG(x6, r6_usr); __DECL_REG(x7, r7_usr); __DECL_REG(x8, r8_usr); __DECL_REG(x9, r9_usr); __DECL_REG(x10, r10_usr); __DECL_REG(x11, r11_usr); __DECL_REG(x12, r12_usr); __DECL_REG(x13, sp_usr); __DECL_REG(x14, lr_usr); __DECL_REG(x15, __unused_sp_hyp); __DECL_REG(x16, lr_irq); __DECL_REG(x17, sp_irq); __DECL_REG(x18, lr_svc); __DECL_REG(x19, sp_svc); __DECL_REG(x20, lr_abt); __DECL_REG(x21, sp_abt); __DECL_REG(x22, lr_und); __DECL_REG(x23, sp_und); __DECL_REG(x24, r8_fiq); __DECL_REG(x25, r9_fiq); __DECL_REG(x26, r10_fiq); __DECL_REG(x27, r11_fiq); __DECL_REG(x28, r12_fiq); __DECL_REG(x29, sp_fiq); __DECL_REG(x30, lr_fiq); /* Return address and mode */ __DECL_REG(pc64, pc32); /* ELR_EL2 */ uint32_t cpsr; /* SPSR_EL2 */ union { uint32_t spsr_el1; /* AArch64 */ uint32_t spsr_svc; /* AArch32 */ }; /* AArch32 guests only */ uint32_t spsr_fiq, spsr_irq, spsr_und, spsr_abt; /* AArch64 guests only */ uint64_t sp_el0; uint64_t sp_el1, elr_el1; }; typedef struct vcpu_guest_core_regs vcpu_guest_core_regs_t; DEFINE_XEN_GUEST_HANDLE(vcpu_guest_core_regs_t); #undef __DECL_REG typedef uint64_t xen_pfn_t; #define PRI_xen_pfn PRIx64 /* Maximum number of virtual CPUs in legacy multi-processor guests. */ /* Only one. All other VCPUS must use VCPUOP_register_vcpu_info */ #define XEN_LEGACY_MAX_VCPUS 1 typedef uint64_t xen_ulong_t; #define PRI_xen_ulong PRIx64 #if defined(__XEN__) || defined(__XEN_TOOLS__) struct vcpu_guest_context { #define _VGCF_online 0 #define VGCF_online (1<<_VGCF_online) uint32_t flags; /* VGCF_* */ struct vcpu_guest_core_regs user_regs; /* Core CPU registers */ uint32_t sctlr; uint64_t ttbcr, ttbr0, ttbr1; }; typedef struct vcpu_guest_context vcpu_guest_context_t; DEFINE_XEN_GUEST_HANDLE(vcpu_guest_context_t); /* * struct xen_arch_domainconfig's ABI is covered by * XEN_DOMCTL_INTERFACE_VERSION. */ #define XEN_DOMCTL_CONFIG_GIC_NATIVE 0 #define XEN_DOMCTL_CONFIG_GIC_V2 1 #define XEN_DOMCTL_CONFIG_GIC_V3 2 struct xen_arch_domainconfig { /* IN/OUT */ uint8_t gic_version; /* IN */ uint32_t nr_spis; /* * OUT * Based on the property clock-frequency in the DT timer node. * The property may be present when the bootloader/firmware doesn't * set correctly CNTFRQ which hold the timer frequency. * * As it's not possible to trap this register, we have to replicate * the value in the guest DT. * * = 0 => property not present * > 0 => Value of the property * */ uint32_t clock_frequency; }; #endif /* __XEN__ || __XEN_TOOLS__ */ struct arch_vcpu_info { }; typedef struct arch_vcpu_info arch_vcpu_info_t; struct arch_shared_info { }; typedef struct arch_shared_info arch_shared_info_t; typedef uint64_t xen_callback_t; #endif #if defined(__XEN__) || defined(__XEN_TOOLS__) /* PSR bits (CPSR, SPSR) */ #define PSR_THUMB (1<<5) /* Thumb Mode enable */ #define PSR_FIQ_MASK (1<<6) /* Fast Interrupt mask */ #define PSR_IRQ_MASK (1<<7) /* Interrupt mask */ #define PSR_ABT_MASK (1<<8) /* Asynchronous Abort mask */ #define PSR_BIG_ENDIAN (1<<9) /* arm32: Big Endian Mode */ #define PSR_DBG_MASK (1<<9) /* arm64: Debug Exception mask */ #define PSR_IT_MASK (0x0600fc00) /* Thumb If-Then Mask */ #define PSR_JAZELLE (1<<24) /* Jazelle Mode */ /* 32 bit modes */ #define PSR_MODE_USR 0x10 #define PSR_MODE_FIQ 0x11 #define PSR_MODE_IRQ 0x12 #define PSR_MODE_SVC 0x13 #define PSR_MODE_MON 0x16 #define PSR_MODE_ABT 0x17 #define PSR_MODE_HYP 0x1a #define PSR_MODE_UND 0x1b #define PSR_MODE_SYS 0x1f /* 64 bit modes */ #define PSR_MODE_BIT 0x10 /* Set iff AArch32 */ #define PSR_MODE_EL3h 0x0d #define PSR_MODE_EL3t 0x0c #define PSR_MODE_EL2h 0x09 #define PSR_MODE_EL2t 0x08 #define PSR_MODE_EL1h 0x05 #define PSR_MODE_EL1t 0x04 #define PSR_MODE_EL0t 0x00 #define PSR_GUEST32_INIT (PSR_ABT_MASK|PSR_FIQ_MASK|PSR_IRQ_MASK|PSR_MODE_SVC) #define PSR_GUEST64_INIT (PSR_ABT_MASK|PSR_FIQ_MASK|PSR_IRQ_MASK|PSR_MODE_EL1h) #define SCTLR_GUEST_INIT 0x00c50078 /* * Virtual machine platform (memory layout, interrupts) * * These are defined for consistency between the tools and the * hypervisor. Guests must not rely on these hardcoded values but * should instead use the FDT. */ /* Physical Address Space */ /* * vGIC mappings: Only one set of mapping is used by the guest. * Therefore they can overlap. */ /* vGIC v2 mappings */ #define GUEST_GICD_BASE 0x03001000ULL #define GUEST_GICD_SIZE 0x00001000ULL #define GUEST_GICC_BASE 0x03002000ULL #define GUEST_GICC_SIZE 0x00002000ULL /* vGIC v3 mappings */ #define GUEST_GICV3_GICD_BASE 0x03001000ULL #define GUEST_GICV3_GICD_SIZE 0x00010000ULL #define GUEST_GICV3_RDIST_STRIDE 0x20000ULL #define GUEST_GICV3_RDIST_REGIONS 1 #define GUEST_GICV3_GICR0_BASE 0x03020000ULL /* vCPU0 - vCPU127 */ #define GUEST_GICV3_GICR0_SIZE 0x01000000ULL /* * 16MB == 4096 pages reserved for guest to use as a region to map its * grant table in. */ #define GUEST_GNTTAB_BASE 0x38000000ULL #define GUEST_GNTTAB_SIZE 0x01000000ULL #define GUEST_MAGIC_BASE 0x39000000ULL #define GUEST_MAGIC_SIZE 0x01000000ULL #define GUEST_RAM_BANKS 2 #define GUEST_RAM0_BASE 0x40000000ULL /* 3GB of low RAM @ 1GB */ #define GUEST_RAM0_SIZE 0xc0000000ULL #define GUEST_RAM1_BASE 0x0200000000ULL /* 1016GB of RAM @ 8GB */ #define GUEST_RAM1_SIZE 0xfe00000000ULL #define GUEST_RAM_BASE GUEST_RAM0_BASE /* Lowest RAM address */ /* Largest amount of actual RAM, not including holes */ #define GUEST_RAM_MAX (GUEST_RAM0_SIZE + GUEST_RAM1_SIZE) /* Suitable for e.g. const uint64_t ramfoo[] = GUEST_RAM_BANK_FOOS; */ #define GUEST_RAM_BANK_BASES { GUEST_RAM0_BASE, GUEST_RAM1_BASE } #define GUEST_RAM_BANK_SIZES { GUEST_RAM0_SIZE, GUEST_RAM1_SIZE } /* Interrupts */ #define GUEST_TIMER_VIRT_PPI 27 #define GUEST_TIMER_PHYS_S_PPI 29 #define GUEST_TIMER_PHYS_NS_PPI 30 #define GUEST_EVTCHN_PPI 31 /* PSCI functions */ #define PSCI_cpu_suspend 0 #define PSCI_cpu_off 1 #define PSCI_cpu_on 2 #define PSCI_migrate 3 #endif #ifndef __ASSEMBLY__ /* Stub definition of PMU structure */ typedef struct xen_pmu_arch { uint8_t dummy; } xen_pmu_arch_t; #endif #endif /* __XEN_PUBLIC_ARCH_ARM_H__ */ /* * Local variables: * mode: C * c-file-style: "BSD" * c-basic-offset: 4 * tab-width: 4 * indent-tabs-mode: nil * End: */